Yingying Chen , Linli Yang , Yuanyuan Li , Lulu Si , Hanlin Fu , Tianjiao Lai , Ruixia Guo
{"title":"聚苯乙烯纳米塑料通过PI3K-Akt通路驱动巨噬细胞胞外陷阱形成诱导卵巢损伤","authors":"Yingying Chen , Linli Yang , Yuanyuan Li , Lulu Si , Hanlin Fu , Tianjiao Lai , Ruixia Guo","doi":"10.1016/j.envpol.2025.127203","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoplastics (NPs), an emerging and increasingly prevalent environmental pollutant, pose a significant threat to organisms. Although recent research has begun to elucidate the mechanisms underlying ovarian toxicity induced by NPs, the involvement of cellular interactions, particularly those involving immune cells, in ovarian injury remains poorly understood. Here, we established a murine model exposed to polystyrene nanoplastics over an 8-week period to explore the role of macrophages in NPs-induced ovarian injury. Our <em>in vivo</em> results demonstrated that NPs accumulated in ovarian tissues, leading to ovarian endocrine disruption and follicular atresia, concomitant with macrophages infiltration and the formation of macrophage extracellular traps (METs). Complementary investigation using a co-culture system of macrophages and granulosa cells (GCs) indicated that NPs-induced METs triggered pyroptosis of GCs, and this biological crosstalk could be mitigated by DNase I. Further transcriptomic analysis revealed that NPs prompted macrophages to release METs through activating the PI3K-Akt signaling pathway. Notably, LY294002, a specific inhibitor of the PI3K-Akt pathway, significantly suppressed METs formation and consequently rescued GCs pyroptosis and ovarian injury induced by NPs. In summary, our findings uncover the mechanistic role of METs in exacerbating ovarian injury induced by NPs, and highlight the PI3K-Akt signaling pathway as a potential therapeutic target.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"386 ","pages":"Article 127203"},"PeriodicalIF":7.3000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polystyrene nanoplastics induce ovarian injury by PI3K-Akt pathway-driven macrophage extracellular trap formation\",\"authors\":\"Yingying Chen , Linli Yang , Yuanyuan Li , Lulu Si , Hanlin Fu , Tianjiao Lai , Ruixia Guo\",\"doi\":\"10.1016/j.envpol.2025.127203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanoplastics (NPs), an emerging and increasingly prevalent environmental pollutant, pose a significant threat to organisms. Although recent research has begun to elucidate the mechanisms underlying ovarian toxicity induced by NPs, the involvement of cellular interactions, particularly those involving immune cells, in ovarian injury remains poorly understood. Here, we established a murine model exposed to polystyrene nanoplastics over an 8-week period to explore the role of macrophages in NPs-induced ovarian injury. Our <em>in vivo</em> results demonstrated that NPs accumulated in ovarian tissues, leading to ovarian endocrine disruption and follicular atresia, concomitant with macrophages infiltration and the formation of macrophage extracellular traps (METs). Complementary investigation using a co-culture system of macrophages and granulosa cells (GCs) indicated that NPs-induced METs triggered pyroptosis of GCs, and this biological crosstalk could be mitigated by DNase I. Further transcriptomic analysis revealed that NPs prompted macrophages to release METs through activating the PI3K-Akt signaling pathway. Notably, LY294002, a specific inhibitor of the PI3K-Akt pathway, significantly suppressed METs formation and consequently rescued GCs pyroptosis and ovarian injury induced by NPs. In summary, our findings uncover the mechanistic role of METs in exacerbating ovarian injury induced by NPs, and highlight the PI3K-Akt signaling pathway as a potential therapeutic target.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"386 \",\"pages\":\"Article 127203\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125015775\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125015775","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Nanoplastics (NPs), an emerging and increasingly prevalent environmental pollutant, pose a significant threat to organisms. Although recent research has begun to elucidate the mechanisms underlying ovarian toxicity induced by NPs, the involvement of cellular interactions, particularly those involving immune cells, in ovarian injury remains poorly understood. Here, we established a murine model exposed to polystyrene nanoplastics over an 8-week period to explore the role of macrophages in NPs-induced ovarian injury. Our in vivo results demonstrated that NPs accumulated in ovarian tissues, leading to ovarian endocrine disruption and follicular atresia, concomitant with macrophages infiltration and the formation of macrophage extracellular traps (METs). Complementary investigation using a co-culture system of macrophages and granulosa cells (GCs) indicated that NPs-induced METs triggered pyroptosis of GCs, and this biological crosstalk could be mitigated by DNase I. Further transcriptomic analysis revealed that NPs prompted macrophages to release METs through activating the PI3K-Akt signaling pathway. Notably, LY294002, a specific inhibitor of the PI3K-Akt pathway, significantly suppressed METs formation and consequently rescued GCs pyroptosis and ovarian injury induced by NPs. In summary, our findings uncover the mechanistic role of METs in exacerbating ovarian injury induced by NPs, and highlight the PI3K-Akt signaling pathway as a potential therapeutic target.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.