Claudia Dessì , Stefano Aliani , Vincenzo Donnarumma , Maria Cristina Follesa , Davide Moccia , Giuseppe Suaria , Andrea Paluselli , Alessandro Cau
{"title":"风化微塑料改变深海底栖生物地球化学和有机物循环:来自微观世界实验的见解","authors":"Claudia Dessì , Stefano Aliani , Vincenzo Donnarumma , Maria Cristina Follesa , Davide Moccia , Giuseppe Suaria , Andrea Paluselli , Alessandro Cau","doi":"10.1016/j.envpol.2025.127209","DOIUrl":null,"url":null,"abstract":"<div><div>The deep seafloor is the largest reservoir for plastic contamination; yet, it remains unclear whether Carbon introduced through synthetic polymers might alter key ecosystem functions. We assessed the potential alterations in organic matter (OM) cycling triggered by a pulse-injection of microplastics (MPs) into deep sea sediments collected from the upper bathyal zone at 530 m depth. Sediments were exposed for 15, 30 and 45 days to environmentally relevant concentrations (∼0.25 % in weight) of naturally weathered MPs (size range 70–210 μm) of polyethylene, tyre wear particles, and a mixture of polymers. Weathered MPs significantly affected the semi-labile fractions of sedimentary OM and extracellular enzymatic activities, ultimately impairing carbon degradation and turnover rates. Polymer-specific effects were observed in carbohydrate and lipid contents, as well as in the activities of alkaline phosphatase and β-glucosidase, with tyre wear particles exerting the most intense impact. Notably, the polymer mixture triggered a less intense effect compared to the same concentration of single polymers. This study highlights how MP contamination can disrupt biogeochemical cycles in deep-sea soft bottoms. Given that these ecosystems constitute the largest portion of the oceans’ seafloor, impacts here documented may signal possible cascading effects throughout the ecological hierarchy. Further research is needed to fully understand the dynamics and effects triggered by substantial accumulation of plastic-derived Carbon in these ecosystems.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"386 ","pages":"Article 127209"},"PeriodicalIF":7.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weathered microplastics alter deep sea benthic biogeochemistry and organic matter cycling: insights from a microcosm experiment\",\"authors\":\"Claudia Dessì , Stefano Aliani , Vincenzo Donnarumma , Maria Cristina Follesa , Davide Moccia , Giuseppe Suaria , Andrea Paluselli , Alessandro Cau\",\"doi\":\"10.1016/j.envpol.2025.127209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The deep seafloor is the largest reservoir for plastic contamination; yet, it remains unclear whether Carbon introduced through synthetic polymers might alter key ecosystem functions. We assessed the potential alterations in organic matter (OM) cycling triggered by a pulse-injection of microplastics (MPs) into deep sea sediments collected from the upper bathyal zone at 530 m depth. Sediments were exposed for 15, 30 and 45 days to environmentally relevant concentrations (∼0.25 % in weight) of naturally weathered MPs (size range 70–210 μm) of polyethylene, tyre wear particles, and a mixture of polymers. Weathered MPs significantly affected the semi-labile fractions of sedimentary OM and extracellular enzymatic activities, ultimately impairing carbon degradation and turnover rates. Polymer-specific effects were observed in carbohydrate and lipid contents, as well as in the activities of alkaline phosphatase and β-glucosidase, with tyre wear particles exerting the most intense impact. Notably, the polymer mixture triggered a less intense effect compared to the same concentration of single polymers. This study highlights how MP contamination can disrupt biogeochemical cycles in deep-sea soft bottoms. Given that these ecosystems constitute the largest portion of the oceans’ seafloor, impacts here documented may signal possible cascading effects throughout the ecological hierarchy. Further research is needed to fully understand the dynamics and effects triggered by substantial accumulation of plastic-derived Carbon in these ecosystems.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"386 \",\"pages\":\"Article 127209\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125015830\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125015830","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Weathered microplastics alter deep sea benthic biogeochemistry and organic matter cycling: insights from a microcosm experiment
The deep seafloor is the largest reservoir for plastic contamination; yet, it remains unclear whether Carbon introduced through synthetic polymers might alter key ecosystem functions. We assessed the potential alterations in organic matter (OM) cycling triggered by a pulse-injection of microplastics (MPs) into deep sea sediments collected from the upper bathyal zone at 530 m depth. Sediments were exposed for 15, 30 and 45 days to environmentally relevant concentrations (∼0.25 % in weight) of naturally weathered MPs (size range 70–210 μm) of polyethylene, tyre wear particles, and a mixture of polymers. Weathered MPs significantly affected the semi-labile fractions of sedimentary OM and extracellular enzymatic activities, ultimately impairing carbon degradation and turnover rates. Polymer-specific effects were observed in carbohydrate and lipid contents, as well as in the activities of alkaline phosphatase and β-glucosidase, with tyre wear particles exerting the most intense impact. Notably, the polymer mixture triggered a less intense effect compared to the same concentration of single polymers. This study highlights how MP contamination can disrupt biogeochemical cycles in deep-sea soft bottoms. Given that these ecosystems constitute the largest portion of the oceans’ seafloor, impacts here documented may signal possible cascading effects throughout the ecological hierarchy. Further research is needed to fully understand the dynamics and effects triggered by substantial accumulation of plastic-derived Carbon in these ecosystems.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.