具有动态氢键网络的具有机械和热稳定性的凝胶聚合物电解质用于宽温锂金属电池。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yaoxiang Shan,Bingjia Lu,Ting Li,Bingkun Zang,Haihang Huang,Quanqiang Yuan,Yujie Zou,Shiming Qiu,Xucai Yin,Yang Ren
{"title":"具有动态氢键网络的具有机械和热稳定性的凝胶聚合物电解质用于宽温锂金属电池。","authors":"Yaoxiang Shan,Bingjia Lu,Ting Li,Bingkun Zang,Haihang Huang,Quanqiang Yuan,Yujie Zou,Shiming Qiu,Xucai Yin,Yang Ren","doi":"10.1021/acsami.5c16276","DOIUrl":null,"url":null,"abstract":"Developing high-energy-density lithium metal batteries (LMBs) demands electrolytes with intrinsic safety and wide-temperature adaptability. However, conventional gel polymer electrolytes (GPEs) face performance limitations at extreme temperatures. Current strategies focus on liquid component optimization but involve complex formulations and fail to meet extreme-environment requirements. This study develops a hydrogen bond-reinforced composite GPE (SA-GPE) by coincorporating Al2O3 nanoparticles and SSZ-13 zeolite into the PVDF-HFP matrix, forming a 3D interpenetrating network. The abundant surface hydroxyl groups on SSZ-13 and Al2O3 establish a robust multihydrogen-bond network with fluorine atoms (-F) in PVDF-HFP polymer chains. This interaction enhances the mechanical strength and thermal stability and effectively suppresses gel degradation at high temperatures while preventing polymer chain rigidification at low temperatures. Moreover, the hydrogen-bonding network ensures homogeneous filler dispersion, significantly inhibiting particle aggregation during cycling and maintaining structural integrity. Additionally, the filler-polymer interface facilitates rapid Li+ transport, and the Lewis acidic sites on Al2O3 promote lithium salt dissociation. The microporous structure of SSZ-13 confines PF6- mobility, further boosting Li+ transference. The SA-GPE demonstrates improved Li+ transference number (0.71), high ionic conductivity (2.38 mS/cm) even under -20 °C, and stable Li plating/stripping for 1000 h at 0.5 mA cm-2. When paired with LiFePO4, full cells maintain 92% capacity after 1000 cycles at room temperature and deliver excellent performance under extreme conditions (-20 °C-50 °C). This work provides a practical strategy for developing safe, wide-temperature-operable LMBs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"44 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically and Thermally Robust Gel Polymer Electrolytes with Dynamic Hydrogen-Bond Networks for Wide-Temperature Lithium Metal Batteries.\",\"authors\":\"Yaoxiang Shan,Bingjia Lu,Ting Li,Bingkun Zang,Haihang Huang,Quanqiang Yuan,Yujie Zou,Shiming Qiu,Xucai Yin,Yang Ren\",\"doi\":\"10.1021/acsami.5c16276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing high-energy-density lithium metal batteries (LMBs) demands electrolytes with intrinsic safety and wide-temperature adaptability. However, conventional gel polymer electrolytes (GPEs) face performance limitations at extreme temperatures. Current strategies focus on liquid component optimization but involve complex formulations and fail to meet extreme-environment requirements. This study develops a hydrogen bond-reinforced composite GPE (SA-GPE) by coincorporating Al2O3 nanoparticles and SSZ-13 zeolite into the PVDF-HFP matrix, forming a 3D interpenetrating network. The abundant surface hydroxyl groups on SSZ-13 and Al2O3 establish a robust multihydrogen-bond network with fluorine atoms (-F) in PVDF-HFP polymer chains. This interaction enhances the mechanical strength and thermal stability and effectively suppresses gel degradation at high temperatures while preventing polymer chain rigidification at low temperatures. Moreover, the hydrogen-bonding network ensures homogeneous filler dispersion, significantly inhibiting particle aggregation during cycling and maintaining structural integrity. Additionally, the filler-polymer interface facilitates rapid Li+ transport, and the Lewis acidic sites on Al2O3 promote lithium salt dissociation. The microporous structure of SSZ-13 confines PF6- mobility, further boosting Li+ transference. The SA-GPE demonstrates improved Li+ transference number (0.71), high ionic conductivity (2.38 mS/cm) even under -20 °C, and stable Li plating/stripping for 1000 h at 0.5 mA cm-2. When paired with LiFePO4, full cells maintain 92% capacity after 1000 cycles at room temperature and deliver excellent performance under extreme conditions (-20 °C-50 °C). This work provides a practical strategy for developing safe, wide-temperature-operable LMBs.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c16276\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c16276","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

发展高能量密度锂金属电池需要具有本质安全性和宽温度适应性的电解质。然而,传统的凝胶聚合物电解质(gpe)在极端温度下面临性能限制。目前的策略侧重于液体成分的优化,但涉及复杂的配方,无法满足极端环境的要求。本研究通过将Al2O3纳米颗粒和SSZ-13沸石结合到PVDF-HFP基体中,形成三维互穿网络,开发了一种氢键增强复合材料GPE (SA-GPE)。SSZ-13和Al2O3上丰富的表面羟基与PVDF-HFP聚合物链中的氟原子(-F)建立了强大的多氢键网络。这种相互作用增强了机械强度和热稳定性,并有效地抑制了凝胶在高温下的降解,同时防止了聚合物链在低温下的硬化。此外,氢键网络确保填料均匀分散,在循环过程中显著抑制颗粒聚集并保持结构完整性。此外,填料-聚合物界面有利于Li+的快速运输,Al2O3上的Lewis酸位促进锂盐的解离。SSZ-13的微孔结构限制了PF6-的迁移,进一步促进了Li+的转移。SA-GPE在-20°C条件下具有较高的离子电导率(2.38 mS/cm),在0.5 mA cm-2条件下可稳定镀/剥离1000小时。当与LiFePO4配对时,在室温下1000次循环后,完整的电池保持92%的容量,并在极端条件下(-20°C-50°C)提供出色的性能。这项工作为开发安全、宽温度可操作的lmb提供了一个实用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanically and Thermally Robust Gel Polymer Electrolytes with Dynamic Hydrogen-Bond Networks for Wide-Temperature Lithium Metal Batteries.
Developing high-energy-density lithium metal batteries (LMBs) demands electrolytes with intrinsic safety and wide-temperature adaptability. However, conventional gel polymer electrolytes (GPEs) face performance limitations at extreme temperatures. Current strategies focus on liquid component optimization but involve complex formulations and fail to meet extreme-environment requirements. This study develops a hydrogen bond-reinforced composite GPE (SA-GPE) by coincorporating Al2O3 nanoparticles and SSZ-13 zeolite into the PVDF-HFP matrix, forming a 3D interpenetrating network. The abundant surface hydroxyl groups on SSZ-13 and Al2O3 establish a robust multihydrogen-bond network with fluorine atoms (-F) in PVDF-HFP polymer chains. This interaction enhances the mechanical strength and thermal stability and effectively suppresses gel degradation at high temperatures while preventing polymer chain rigidification at low temperatures. Moreover, the hydrogen-bonding network ensures homogeneous filler dispersion, significantly inhibiting particle aggregation during cycling and maintaining structural integrity. Additionally, the filler-polymer interface facilitates rapid Li+ transport, and the Lewis acidic sites on Al2O3 promote lithium salt dissociation. The microporous structure of SSZ-13 confines PF6- mobility, further boosting Li+ transference. The SA-GPE demonstrates improved Li+ transference number (0.71), high ionic conductivity (2.38 mS/cm) even under -20 °C, and stable Li plating/stripping for 1000 h at 0.5 mA cm-2. When paired with LiFePO4, full cells maintain 92% capacity after 1000 cycles at room temperature and deliver excellent performance under extreme conditions (-20 °C-50 °C). This work provides a practical strategy for developing safe, wide-temperature-operable LMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信