利用儿茶酚化学来解决可重新编程液晶执行器的韧性-柔软性-工作能力权衡。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Enjian He,Yahe Wu,Huan Liang,Hongtu Xu,Jiujiang Ji,Zhijun Yang,Yixuan Wang,Yen Wei,Yan Ji
{"title":"利用儿茶酚化学来解决可重新编程液晶执行器的韧性-柔软性-工作能力权衡。","authors":"Enjian He,Yahe Wu,Huan Liang,Hongtu Xu,Jiujiang Ji,Zhijun Yang,Yixuan Wang,Yen Wei,Yan Ji","doi":"10.1038/s41467-025-63836-x","DOIUrl":null,"url":null,"abstract":"Dynamic chemistry endows liquid crystal elastomers (LCEs) with reprogrammability, enabling the reversible modulation of actuation modes to adapt to diverse tasks and enhancing sustainability and lifecycle management. However, balancing toughness, softness, and work capacity remains challenging due to their inherent tradeoff, as these properties are essential for achieving high-performance and stable actuation. Here, inspired by mussel coordination chemistry, we design a macromolecular crosslinker that combines covalent crosslinking with coordination bonds to tackle this challenge. The optimized LCE achieves exceptional toughness of 28.5 MJ/m³ and low Young's modulus of 3.1 MPa, with high-temperature toughness exceeding 9.3 MJ/m³ at 90 °C (25 °C above phase transition temperature, Ti) and reaching 5.5 MJ/m³ at 120 °C (55 °C above Ti), while maintaining work capacity of 416 kJ/m³. Increasing coordination bond content further improves toughness (up to 67.0 MJ/m³) without significantly altering modulus or work capacity. Additionally, incorporating different metal ions provides a strategy akin to stem cell differentiation, transforming a single base material into variants with distinct properties. This enables spatially heterogeneous materials, paving the way for highly integrated actuators with multifunctionality.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"143 1","pages":"8782"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging catechol chemistry to tackle toughness-softness-work capacity tradeoff in reprogrammable liquid crystal actuators.\",\"authors\":\"Enjian He,Yahe Wu,Huan Liang,Hongtu Xu,Jiujiang Ji,Zhijun Yang,Yixuan Wang,Yen Wei,Yan Ji\",\"doi\":\"10.1038/s41467-025-63836-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic chemistry endows liquid crystal elastomers (LCEs) with reprogrammability, enabling the reversible modulation of actuation modes to adapt to diverse tasks and enhancing sustainability and lifecycle management. However, balancing toughness, softness, and work capacity remains challenging due to their inherent tradeoff, as these properties are essential for achieving high-performance and stable actuation. Here, inspired by mussel coordination chemistry, we design a macromolecular crosslinker that combines covalent crosslinking with coordination bonds to tackle this challenge. The optimized LCE achieves exceptional toughness of 28.5 MJ/m³ and low Young's modulus of 3.1 MPa, with high-temperature toughness exceeding 9.3 MJ/m³ at 90 °C (25 °C above phase transition temperature, Ti) and reaching 5.5 MJ/m³ at 120 °C (55 °C above Ti), while maintaining work capacity of 416 kJ/m³. Increasing coordination bond content further improves toughness (up to 67.0 MJ/m³) without significantly altering modulus or work capacity. Additionally, incorporating different metal ions provides a strategy akin to stem cell differentiation, transforming a single base material into variants with distinct properties. This enables spatially heterogeneous materials, paving the way for highly integrated actuators with multifunctionality.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"143 1\",\"pages\":\"8782\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63836-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63836-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

动态化学赋予液晶弹性体(LCEs)可重编程性,使驱动模式的可逆调制能够适应不同的任务,并增强可持续性和生命周期管理。然而,由于其固有的权衡,平衡韧性,柔软性和工作能力仍然具有挑战性,因为这些特性对于实现高性能和稳定的驱动至关重要。在这里,受贻贝配位化学的启发,我们设计了一种大分子交联剂,将共价交联与配位键结合起来,以解决这一挑战。优化后的LCE韧性达到28.5 MJ/m³,杨氏模量低至3.1 MPa,高温韧性在90℃(相变温度Ti≥25℃)时超过9.3 MJ/m³,在120℃(相变温度Ti≥55℃)时达到5.5 MJ/m³,同时保持416 kJ/m³的功容量。增加配位键含量进一步提高韧性(高达67.0 MJ/m³),而不会显著改变模量或工作能力。此外,结合不同的金属离子提供了一种类似于干细胞分化的策略,将单一的基础材料转化为具有不同特性的变体。这使得空间异质材料成为可能,为高度集成的多功能执行器铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging catechol chemistry to tackle toughness-softness-work capacity tradeoff in reprogrammable liquid crystal actuators.
Dynamic chemistry endows liquid crystal elastomers (LCEs) with reprogrammability, enabling the reversible modulation of actuation modes to adapt to diverse tasks and enhancing sustainability and lifecycle management. However, balancing toughness, softness, and work capacity remains challenging due to their inherent tradeoff, as these properties are essential for achieving high-performance and stable actuation. Here, inspired by mussel coordination chemistry, we design a macromolecular crosslinker that combines covalent crosslinking with coordination bonds to tackle this challenge. The optimized LCE achieves exceptional toughness of 28.5 MJ/m³ and low Young's modulus of 3.1 MPa, with high-temperature toughness exceeding 9.3 MJ/m³ at 90 °C (25 °C above phase transition temperature, Ti) and reaching 5.5 MJ/m³ at 120 °C (55 °C above Ti), while maintaining work capacity of 416 kJ/m³. Increasing coordination bond content further improves toughness (up to 67.0 MJ/m³) without significantly altering modulus or work capacity. Additionally, incorporating different metal ions provides a strategy akin to stem cell differentiation, transforming a single base material into variants with distinct properties. This enables spatially heterogeneous materials, paving the way for highly integrated actuators with multifunctionality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信