易级联锚定合成超高金属负载单原子,显著改善了类芬顿催化。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shuaishuai Li,Wei Wang,Huizhong Wu,Xuechun Wang,Shihu Ding,Jingyang Liu,Xiuwu Zhang,Jiangli Sun,Chunhong Fu,Minghua Zhou
{"title":"易级联锚定合成超高金属负载单原子,显著改善了类芬顿催化。","authors":"Shuaishuai Li,Wei Wang,Huizhong Wu,Xuechun Wang,Shihu Ding,Jingyang Liu,Xiuwu Zhang,Jiangli Sun,Chunhong Fu,Minghua Zhou","doi":"10.1038/s41467-025-63858-5","DOIUrl":null,"url":null,"abstract":"It is crucial to break the low metal-loading limitation and reveal the intersite synergy-governed catalytic behavior of single-atom catalysts (SACs). Here, a universal synthesis strategy achieves record loadings of transition metals (Fe 41.31 wt%, Mn 35.13 wt%), rare-earth metals (La 28.62 wt%), and noble metals (Ag 27.04 wt%). The strong oxalic acid-metal chelation and concurrent entangled polymer networks enable high-loading SACs. High-density single atoms induce site-intensive effects, modulating electron density and valence states to achieve peroxymonosulfate-based Fenton-like reactions with rate constants 1-2 orders of magnitude higher than conventional SACs. Elevated metal loading boosts Fenton-like potential jumps, facilitates electron transfer, and reduces the rate-limiting energy barrier in 1O2 production. This material is also proven effective in real wastewater treatment, combining high decontamination efficiency with operational stability. It is anticipated that the cascade-anchoring synthesis strategy will take SACs a step closer to practical applications.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":"8796"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile cascade-anchored synthesis of ultrahigh metal loading single-atom for significantly improved Fenton-like catalysis.\",\"authors\":\"Shuaishuai Li,Wei Wang,Huizhong Wu,Xuechun Wang,Shihu Ding,Jingyang Liu,Xiuwu Zhang,Jiangli Sun,Chunhong Fu,Minghua Zhou\",\"doi\":\"10.1038/s41467-025-63858-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is crucial to break the low metal-loading limitation and reveal the intersite synergy-governed catalytic behavior of single-atom catalysts (SACs). Here, a universal synthesis strategy achieves record loadings of transition metals (Fe 41.31 wt%, Mn 35.13 wt%), rare-earth metals (La 28.62 wt%), and noble metals (Ag 27.04 wt%). The strong oxalic acid-metal chelation and concurrent entangled polymer networks enable high-loading SACs. High-density single atoms induce site-intensive effects, modulating electron density and valence states to achieve peroxymonosulfate-based Fenton-like reactions with rate constants 1-2 orders of magnitude higher than conventional SACs. Elevated metal loading boosts Fenton-like potential jumps, facilitates electron transfer, and reduces the rate-limiting energy barrier in 1O2 production. This material is also proven effective in real wastewater treatment, combining high decontamination efficiency with operational stability. It is anticipated that the cascade-anchoring synthesis strategy will take SACs a step closer to practical applications.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"27 1\",\"pages\":\"8796\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63858-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63858-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

突破低金属负载的限制,揭示单原子催化剂(SACs)的场间协同催化行为是至关重要的。在这里,通用合成策略实现了过渡金属(Fe 41.31 wt%, Mn 35.13 wt%),稀土金属(La 28.62 wt%)和贵金属(Ag 27.04 wt%)的创纪录负载。强草酸-金属螯合和并发纠缠的聚合物网络使高负载SACs成为可能。高密度的单原子诱导位点密集效应,调节电子密度和价态,实现速率常数比传统sac高1-2个数量级的过氧单硫酸盐类芬顿反应。升高的金属负载促进了芬顿样电位跳跃,促进了电子转移,并降低了1O2生产中的限速能量势垒。该材料在实际废水处理中也被证明是有效的,结合了高去污效率和运行稳定性。预计级联锚定综合策略将使sac更接近实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile cascade-anchored synthesis of ultrahigh metal loading single-atom for significantly improved Fenton-like catalysis.
It is crucial to break the low metal-loading limitation and reveal the intersite synergy-governed catalytic behavior of single-atom catalysts (SACs). Here, a universal synthesis strategy achieves record loadings of transition metals (Fe 41.31 wt%, Mn 35.13 wt%), rare-earth metals (La 28.62 wt%), and noble metals (Ag 27.04 wt%). The strong oxalic acid-metal chelation and concurrent entangled polymer networks enable high-loading SACs. High-density single atoms induce site-intensive effects, modulating electron density and valence states to achieve peroxymonosulfate-based Fenton-like reactions with rate constants 1-2 orders of magnitude higher than conventional SACs. Elevated metal loading boosts Fenton-like potential jumps, facilitates electron transfer, and reduces the rate-limiting energy barrier in 1O2 production. This material is also proven effective in real wastewater treatment, combining high decontamination efficiency with operational stability. It is anticipated that the cascade-anchoring synthesis strategy will take SACs a step closer to practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信