ceox -集成双位点增强尿素电合成硝酸盐和二氧化碳。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xu Wu,Yang Chen,Bing Tang,Qiong Yan,Deyu Wu,Heng Zhou,Hao Wang,Heng Zhang,Daoping He,Hui Li,Jianrong Zeng,Lanlu Lu,Song Yang,Tianyi Ma
{"title":"ceox -集成双位点增强尿素电合成硝酸盐和二氧化碳。","authors":"Xu Wu,Yang Chen,Bing Tang,Qiong Yan,Deyu Wu,Heng Zhou,Hao Wang,Heng Zhang,Daoping He,Hui Li,Jianrong Zeng,Lanlu Lu,Song Yang,Tianyi Ma","doi":"10.1038/s41467-025-63839-8","DOIUrl":null,"url":null,"abstract":"Electrocatalytic urea synthesis via the co-reduction of NO 3 - and CO2 as a promising option to the conventional Bosch-Meiser remains challenged by regulating desired intermediates to simultaneously achieve a high yield and Faradaic efficiency. Here, we integrate the substrate material (SiO2) and functionally atomic sites (Cu and Sn) utilizing CeOx nanoclusters as 'adhesive', in which the CeOx and SiO2 form the composite carrier (CS) construct Cu and Sn diatomic electrocatalyst (CuSn/CS-1). Spectroscopic techniques and density functional theory calculations reveal that overall charge redistribution in the CeOx-CuSn modules forms bifunctional active sites with unique electronic properties and abundant oxygen vacancies. The Cu sites mediate the conversion of CO2 to *CO through a single carbon-coordinated structure with *CO2-, while Sn sites regulate the reduction of NO 3 - to stabilize the formation of *NH2, broadening the C-N coupling route. Oxygen vacancies provide additional electron storage sites and promote the electron flow during the electrocatalytic process. CuSn/CS-1 achieves a urea yield of 55.81 mmol g-1cat. h-1 with a Faradaic efficiency of 79.27% in H-cell at -0.7 V versus the reversible hydrogen electrode. This work overcomes the traditional trade-off between urea yield and Faradaic efficiency, providing a feasible and sustainable strategy.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"18 1","pages":"8785"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CeOx-Integrated dual site enhanced urea electrosynthesis from nitrate and carbon dioxide.\",\"authors\":\"Xu Wu,Yang Chen,Bing Tang,Qiong Yan,Deyu Wu,Heng Zhou,Hao Wang,Heng Zhang,Daoping He,Hui Li,Jianrong Zeng,Lanlu Lu,Song Yang,Tianyi Ma\",\"doi\":\"10.1038/s41467-025-63839-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocatalytic urea synthesis via the co-reduction of NO 3 - and CO2 as a promising option to the conventional Bosch-Meiser remains challenged by regulating desired intermediates to simultaneously achieve a high yield and Faradaic efficiency. Here, we integrate the substrate material (SiO2) and functionally atomic sites (Cu and Sn) utilizing CeOx nanoclusters as 'adhesive', in which the CeOx and SiO2 form the composite carrier (CS) construct Cu and Sn diatomic electrocatalyst (CuSn/CS-1). Spectroscopic techniques and density functional theory calculations reveal that overall charge redistribution in the CeOx-CuSn modules forms bifunctional active sites with unique electronic properties and abundant oxygen vacancies. The Cu sites mediate the conversion of CO2 to *CO through a single carbon-coordinated structure with *CO2-, while Sn sites regulate the reduction of NO 3 - to stabilize the formation of *NH2, broadening the C-N coupling route. Oxygen vacancies provide additional electron storage sites and promote the electron flow during the electrocatalytic process. CuSn/CS-1 achieves a urea yield of 55.81 mmol g-1cat. h-1 with a Faradaic efficiency of 79.27% in H-cell at -0.7 V versus the reversible hydrogen electrode. This work overcomes the traditional trade-off between urea yield and Faradaic efficiency, providing a feasible and sustainable strategy.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"18 1\",\"pages\":\"8785\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63839-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63839-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过no3 -和CO2共还原的电催化尿素合成作为传统Bosch-Meiser的一个有前途的选择,仍然面临着调节所需中间体同时实现高产率和法拉第效率的挑战。本研究利用CeOx纳米团簇作为“粘合剂”,将衬底材料(SiO2)和功能原子位点(Cu和Sn)集成在一起,其中CeOx和SiO2形成复合载体(CS),构建Cu和Sn双原子电催化剂(CuSn/CS-1)。光谱技术和密度泛函理论计算表明,CeOx-CuSn模块的整体电荷重分布形成了具有独特电子性质和丰富氧空位的双功能活性位点。Cu位点通过与*CO2-的单一碳配位结构介导CO2向*CO的转化,而Sn位点调节no3 -的还原以稳定*NH2的形成,拓宽了C-N偶联途径。在电催化过程中,氧空位提供了额外的电子存储位置并促进了电子流动。CuSn/CS-1的尿素产率为55.81 mmol g-1cat。与可逆氢电极相比,h-1在-0.7 V的h电池中具有79.27%的法拉第效率。这项工作克服了传统的尿素产量和法拉第效率之间的权衡,提供了一个可行的和可持续的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CeOx-Integrated dual site enhanced urea electrosynthesis from nitrate and carbon dioxide.
Electrocatalytic urea synthesis via the co-reduction of NO 3 - and CO2 as a promising option to the conventional Bosch-Meiser remains challenged by regulating desired intermediates to simultaneously achieve a high yield and Faradaic efficiency. Here, we integrate the substrate material (SiO2) and functionally atomic sites (Cu and Sn) utilizing CeOx nanoclusters as 'adhesive', in which the CeOx and SiO2 form the composite carrier (CS) construct Cu and Sn diatomic electrocatalyst (CuSn/CS-1). Spectroscopic techniques and density functional theory calculations reveal that overall charge redistribution in the CeOx-CuSn modules forms bifunctional active sites with unique electronic properties and abundant oxygen vacancies. The Cu sites mediate the conversion of CO2 to *CO through a single carbon-coordinated structure with *CO2-, while Sn sites regulate the reduction of NO 3 - to stabilize the formation of *NH2, broadening the C-N coupling route. Oxygen vacancies provide additional electron storage sites and promote the electron flow during the electrocatalytic process. CuSn/CS-1 achieves a urea yield of 55.81 mmol g-1cat. h-1 with a Faradaic efficiency of 79.27% in H-cell at -0.7 V versus the reversible hydrogen electrode. This work overcomes the traditional trade-off between urea yield and Faradaic efficiency, providing a feasible and sustainable strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信