基于高动态范围基准集的人血浆无标记定量多中心评估。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ute Distler,Han Byul Yoo,Oliver Kardell,Dana Hein,Malte Sielaff,Marian Scherer,Anna M Jozefowicz,Christian Leps,David Gomez-Zepeda,Christine von Toerne,Juliane Merl-Pham,Teresa K Barth,Johanna Tüshaus,Pieter Giesbertz,Torsten Müller,Georg Kliewer,Karim Aljakouch,Barbara Helm,Henry Unger,Dario L Frey,Dominic Helm,Luisa Schwarzmüller,Oliver Popp,Di Qin,Susanne I Wudy,Ludwig Roman Sinn,Julia Mergner,Christina Ludwig,Axel Imhof,Bernhard Kuster,Stefan F Lichtenthaler,Jeroen Krijgsveld,Ursula Klingmüller,Philipp Mertins,Fabian Coscia,Markus Ralser,Michael Mülleder,Stefanie M Hauck,Stefan Tenzer
{"title":"基于高动态范围基准集的人血浆无标记定量多中心评估。","authors":"Ute Distler,Han Byul Yoo,Oliver Kardell,Dana Hein,Malte Sielaff,Marian Scherer,Anna M Jozefowicz,Christian Leps,David Gomez-Zepeda,Christine von Toerne,Juliane Merl-Pham,Teresa K Barth,Johanna Tüshaus,Pieter Giesbertz,Torsten Müller,Georg Kliewer,Karim Aljakouch,Barbara Helm,Henry Unger,Dario L Frey,Dominic Helm,Luisa Schwarzmüller,Oliver Popp,Di Qin,Susanne I Wudy,Ludwig Roman Sinn,Julia Mergner,Christina Ludwig,Axel Imhof,Bernhard Kuster,Stefan F Lichtenthaler,Jeroen Krijgsveld,Ursula Klingmüller,Philipp Mertins,Fabian Coscia,Markus Ralser,Michael Mülleder,Stefanie M Hauck,Stefan Tenzer","doi":"10.1038/s41467-025-64501-z","DOIUrl":null,"url":null,"abstract":"Human plasma is routinely collected during clinical care and constitutes a rich source of biomarkers for diagnostics and patient stratification. Liquid chromatography-mass spectrometry (LC-MS)-based proteomics is a key method for plasma biomarker discovery, but the high dynamic range of plasma proteins poses significant challenges for MS analysis and data processing. To benchmark the quantitative performance of neat plasma analysis, we introduce a multispecies sample set based on a human tryptic plasma digest containing varying low level spike-ins of yeast and E. coli tryptic proteome digests, termed PYE. By analysing the sample set on state-of-the-art LC-MS platforms across twelve different sites in data-dependent (DDA) and data-independent acquisition (DIA) modes, we provide a data resource comprising a total of 1116 individual LC-MS runs. Centralized data analysis shows that DIA methods outperform DDA-based approaches regarding identifications, data completeness, accuracy, and precision. DIA achieves excellent technical reproducibility, as demonstrated by coefficients of variation (CVs) between 3.3% and 9.8% at protein level. Comparative analysis of different setups clearly shows a high overlap in identified proteins and proves that accurate and precise quantitative measurements are feasible across multiple sites, even in a complex matrix such as plasma, using state-of-the-art instrumentation. The collected dataset, including the PYE sample set and strategy presented, serves as a valuable resource for optimizing the accuracy and reproducibility of LC-MS and bioinformatic workflows for clinical plasma proteome analysis.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"98 1","pages":"8774"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicenter evaluation of label-free quantification in human plasma on a high dynamic range benchmark set.\",\"authors\":\"Ute Distler,Han Byul Yoo,Oliver Kardell,Dana Hein,Malte Sielaff,Marian Scherer,Anna M Jozefowicz,Christian Leps,David Gomez-Zepeda,Christine von Toerne,Juliane Merl-Pham,Teresa K Barth,Johanna Tüshaus,Pieter Giesbertz,Torsten Müller,Georg Kliewer,Karim Aljakouch,Barbara Helm,Henry Unger,Dario L Frey,Dominic Helm,Luisa Schwarzmüller,Oliver Popp,Di Qin,Susanne I Wudy,Ludwig Roman Sinn,Julia Mergner,Christina Ludwig,Axel Imhof,Bernhard Kuster,Stefan F Lichtenthaler,Jeroen Krijgsveld,Ursula Klingmüller,Philipp Mertins,Fabian Coscia,Markus Ralser,Michael Mülleder,Stefanie M Hauck,Stefan Tenzer\",\"doi\":\"10.1038/s41467-025-64501-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human plasma is routinely collected during clinical care and constitutes a rich source of biomarkers for diagnostics and patient stratification. Liquid chromatography-mass spectrometry (LC-MS)-based proteomics is a key method for plasma biomarker discovery, but the high dynamic range of plasma proteins poses significant challenges for MS analysis and data processing. To benchmark the quantitative performance of neat plasma analysis, we introduce a multispecies sample set based on a human tryptic plasma digest containing varying low level spike-ins of yeast and E. coli tryptic proteome digests, termed PYE. By analysing the sample set on state-of-the-art LC-MS platforms across twelve different sites in data-dependent (DDA) and data-independent acquisition (DIA) modes, we provide a data resource comprising a total of 1116 individual LC-MS runs. Centralized data analysis shows that DIA methods outperform DDA-based approaches regarding identifications, data completeness, accuracy, and precision. DIA achieves excellent technical reproducibility, as demonstrated by coefficients of variation (CVs) between 3.3% and 9.8% at protein level. Comparative analysis of different setups clearly shows a high overlap in identified proteins and proves that accurate and precise quantitative measurements are feasible across multiple sites, even in a complex matrix such as plasma, using state-of-the-art instrumentation. The collected dataset, including the PYE sample set and strategy presented, serves as a valuable resource for optimizing the accuracy and reproducibility of LC-MS and bioinformatic workflows for clinical plasma proteome analysis.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"98 1\",\"pages\":\"8774\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64501-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64501-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在临床护理期间定期收集人血浆,并为诊断和患者分层提供丰富的生物标志物来源。基于液相色谱-质谱(LC-MS)的蛋白质组学是发现血浆生物标志物的关键方法,但血浆蛋白的高动态范围给质谱分析和数据处理带来了重大挑战。为了对纯血浆分析的定量性能进行基准测试,我们引入了一个基于人类胰蛋白酶血浆消化系统的多物种样本集,其中包含不同水平的酵母和大肠杆菌胰蛋白酶蛋白质组消化系统,称为PYE。通过在12个不同站点的最先进的LC-MS平台上以数据依赖(DDA)和数据独立采集(DIA)模式分析样本集,我们提供了一个由总共1116个独立LC-MS运行组成的数据资源。集中的数据分析表明,DIA方法在识别、数据完整性、准确性和精密度方面优于基于dda的方法。在蛋白质水平上,变异系数(cv)在3.3% ~ 9.8%之间,证明了DIA具有良好的技术重复性。不同设置的比较分析清楚地表明,在已识别的蛋白质中存在高度重叠,并证明使用最先进的仪器在多个位点上进行准确和精确的定量测量是可行的,即使在等离子体等复杂基质中也是如此。收集的数据集,包括PYE样本集和提出的策略,可作为优化LC-MS和临床血浆蛋白质组分析生物信息学工作流程的准确性和可重复性的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicenter evaluation of label-free quantification in human plasma on a high dynamic range benchmark set.
Human plasma is routinely collected during clinical care and constitutes a rich source of biomarkers for diagnostics and patient stratification. Liquid chromatography-mass spectrometry (LC-MS)-based proteomics is a key method for plasma biomarker discovery, but the high dynamic range of plasma proteins poses significant challenges for MS analysis and data processing. To benchmark the quantitative performance of neat plasma analysis, we introduce a multispecies sample set based on a human tryptic plasma digest containing varying low level spike-ins of yeast and E. coli tryptic proteome digests, termed PYE. By analysing the sample set on state-of-the-art LC-MS platforms across twelve different sites in data-dependent (DDA) and data-independent acquisition (DIA) modes, we provide a data resource comprising a total of 1116 individual LC-MS runs. Centralized data analysis shows that DIA methods outperform DDA-based approaches regarding identifications, data completeness, accuracy, and precision. DIA achieves excellent technical reproducibility, as demonstrated by coefficients of variation (CVs) between 3.3% and 9.8% at protein level. Comparative analysis of different setups clearly shows a high overlap in identified proteins and proves that accurate and precise quantitative measurements are feasible across multiple sites, even in a complex matrix such as plasma, using state-of-the-art instrumentation. The collected dataset, including the PYE sample set and strategy presented, serves as a valuable resource for optimizing the accuracy and reproducibility of LC-MS and bioinformatic workflows for clinical plasma proteome analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信