蟾毒灵和槲皮素的双药纳米混悬液在体外和体内显示出有效的抗肝癌活性。

IF 3
Ruirui Song, Bingqian Li, Chengcheng Gao, Zerun Yang, Tiantian Zhu, Yan Sun, Huagang Sheng, Liqiao Zhu
{"title":"蟾毒灵和槲皮素的双药纳米混悬液在体外和体内显示出有效的抗肝癌活性。","authors":"Ruirui Song, Bingqian Li, Chengcheng Gao, Zerun Yang, Tiantian Zhu, Yan Sun, Huagang Sheng, Liqiao Zhu","doi":"10.2174/0115672018405334250831225746","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Both bufalin (BF) and quercetin (QUE) have demonstrated significant antitumor potential. However, they suffer from poor solubility and low bioavailability, which largely limit their clinical application. In order to increase the antitumor activity of BF and QUE by synergistic effect, BF and QUE co-loaded nanosuspension (BF-QUE NS) was developed.</p><p><strong>Methods: </strong>The MTT method was used to determine the viability of HepG2 cells after treatment with BF and QUE at different mass ratios, and the optimal combination ratio was screened. BF-QUE NS was prepared by the anti-solvent precipitation method, and the single factors affecting its preparation were investigated to optimize the formulation and preparation process of the best combined NS. BFQUE NS was characterized by observing morphology, measuring particle size and zeta potential, Xray diffraction, differential scanning calorimetry, and drug release in vitro. Cytotoxicity was detected using the MTT method; the uptake of BF-QUE NS by HepG2 cells was observed by laser confocal microscopy and flow cytometry; apoptosis of HepG2 cells was detected by flow cytometry. BF-QUE NS was systematically characterized, and H22 tumor-bearing mice were further used to investigate the targeting distribution, antitumor effect.</p><p><strong>Results: </strong>The optimal synergistic ratio of BF to QUE was 3:2. The mass ratio of BF and QUE in BFQUE NS was 1.47:1. The optimized BF-QUE NS exhibited an average particle size of 238.4 ± 2.1 nm, polydispersity index of 0.250 ± 0.004, zeta potential of -22.2 ± 0.3 mV, and presented good short-term physical stability. In vitro and in vivo experiments demonstrated that BF-QUE NS exhibited significant liver tumor-targeting efficacy, achieving an inhibition rate of 72.59% in H22 tumorbearing mice, along with high safety profiles.</p><p><strong>Discussion: </strong>BF-QUE NS provides a practical solution to the delivery challenges of poorly soluble anti-cancer drugs.</p><p><strong>Conclusion: </strong>The prepared BF-QUE NS enhanced the drug solubility and promoted the targeted accumulation in tumors, thereby strengthening the synergistic anti-tumor effect of BF and QUE. BFQUE NS shows potential for clinical application as an anti-liver tumor drug.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual-Drug Nanosuspension of Bufalin and Quercetin Exhibits Potent Anti-Hepatocellular Carcinoma Activity In vitro and In vivo.\",\"authors\":\"Ruirui Song, Bingqian Li, Chengcheng Gao, Zerun Yang, Tiantian Zhu, Yan Sun, Huagang Sheng, Liqiao Zhu\",\"doi\":\"10.2174/0115672018405334250831225746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Both bufalin (BF) and quercetin (QUE) have demonstrated significant antitumor potential. However, they suffer from poor solubility and low bioavailability, which largely limit their clinical application. In order to increase the antitumor activity of BF and QUE by synergistic effect, BF and QUE co-loaded nanosuspension (BF-QUE NS) was developed.</p><p><strong>Methods: </strong>The MTT method was used to determine the viability of HepG2 cells after treatment with BF and QUE at different mass ratios, and the optimal combination ratio was screened. BF-QUE NS was prepared by the anti-solvent precipitation method, and the single factors affecting its preparation were investigated to optimize the formulation and preparation process of the best combined NS. BFQUE NS was characterized by observing morphology, measuring particle size and zeta potential, Xray diffraction, differential scanning calorimetry, and drug release in vitro. Cytotoxicity was detected using the MTT method; the uptake of BF-QUE NS by HepG2 cells was observed by laser confocal microscopy and flow cytometry; apoptosis of HepG2 cells was detected by flow cytometry. BF-QUE NS was systematically characterized, and H22 tumor-bearing mice were further used to investigate the targeting distribution, antitumor effect.</p><p><strong>Results: </strong>The optimal synergistic ratio of BF to QUE was 3:2. The mass ratio of BF and QUE in BFQUE NS was 1.47:1. The optimized BF-QUE NS exhibited an average particle size of 238.4 ± 2.1 nm, polydispersity index of 0.250 ± 0.004, zeta potential of -22.2 ± 0.3 mV, and presented good short-term physical stability. In vitro and in vivo experiments demonstrated that BF-QUE NS exhibited significant liver tumor-targeting efficacy, achieving an inhibition rate of 72.59% in H22 tumorbearing mice, along with high safety profiles.</p><p><strong>Discussion: </strong>BF-QUE NS provides a practical solution to the delivery challenges of poorly soluble anti-cancer drugs.</p><p><strong>Conclusion: </strong>The prepared BF-QUE NS enhanced the drug solubility and promoted the targeted accumulation in tumors, thereby strengthening the synergistic anti-tumor effect of BF and QUE. BFQUE NS shows potential for clinical application as an anti-liver tumor drug.</p>\",\"PeriodicalId\":94287,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018405334250831225746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018405334250831225746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蟾毒灵(BF)和槲皮素(QUE)均显示出显著的抗肿瘤潜力。然而,它们的溶解度差,生物利用度低,这在很大程度上限制了它们的临床应用。为了通过协同作用提高BF和QUE的抗肿瘤活性,研制了BF和QUE共载纳米混悬液(BF-QUE NS)。方法:采用MTT法测定不同质量比BF和QUE处理HepG2细胞后的细胞活力,筛选最佳组合比例。采用反溶剂沉淀法制备BF-QUE NS,考察影响其制备的单因素,优化最佳组合NS的配方和制备工艺。采用形貌观察、粒度测定、zeta电位测定、x射线衍射、差示扫描量热法、体外释药等方法对BFQUE NS进行表征。MTT法检测细胞毒性;采用激光共聚焦显微镜和流式细胞术观察HepG2细胞对BF-QUE NS的摄取情况;流式细胞术检测HepG2细胞凋亡情况。对BF-QUE NS进行系统表征,并利用H22荷瘤小鼠进一步研究其靶向分布、抗肿瘤作用。结果:BF与QUE的最佳增效比为3:2。BFQUE NS中BF与QUE的质量比为1.47:1。优化后的BF-QUE NS平均粒径为238.4±2.1 nm,多分散性指数为0.250±0.004,zeta电位为-22.2±0.3 mV,具有良好的短期物理稳定性。体外和体内实验表明,BF-QUE NS具有显著的肝脏肿瘤靶向作用,对H22荷瘤小鼠的抑制率为72.59%,且具有较高的安全性。讨论:BF-QUE NS为难溶性抗癌药物的递送挑战提供了实用的解决方案。结论:制备的BF-QUE NS提高了药物的溶解度,促进了肿瘤内的靶向蓄积,从而增强了BF与QUE的协同抗肿瘤作用。BFQUE NS作为抗肝肿瘤药物具有临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dual-Drug Nanosuspension of Bufalin and Quercetin Exhibits Potent Anti-Hepatocellular Carcinoma Activity In vitro and In vivo.

Introduction: Both bufalin (BF) and quercetin (QUE) have demonstrated significant antitumor potential. However, they suffer from poor solubility and low bioavailability, which largely limit their clinical application. In order to increase the antitumor activity of BF and QUE by synergistic effect, BF and QUE co-loaded nanosuspension (BF-QUE NS) was developed.

Methods: The MTT method was used to determine the viability of HepG2 cells after treatment with BF and QUE at different mass ratios, and the optimal combination ratio was screened. BF-QUE NS was prepared by the anti-solvent precipitation method, and the single factors affecting its preparation were investigated to optimize the formulation and preparation process of the best combined NS. BFQUE NS was characterized by observing morphology, measuring particle size and zeta potential, Xray diffraction, differential scanning calorimetry, and drug release in vitro. Cytotoxicity was detected using the MTT method; the uptake of BF-QUE NS by HepG2 cells was observed by laser confocal microscopy and flow cytometry; apoptosis of HepG2 cells was detected by flow cytometry. BF-QUE NS was systematically characterized, and H22 tumor-bearing mice were further used to investigate the targeting distribution, antitumor effect.

Results: The optimal synergistic ratio of BF to QUE was 3:2. The mass ratio of BF and QUE in BFQUE NS was 1.47:1. The optimized BF-QUE NS exhibited an average particle size of 238.4 ± 2.1 nm, polydispersity index of 0.250 ± 0.004, zeta potential of -22.2 ± 0.3 mV, and presented good short-term physical stability. In vitro and in vivo experiments demonstrated that BF-QUE NS exhibited significant liver tumor-targeting efficacy, achieving an inhibition rate of 72.59% in H22 tumorbearing mice, along with high safety profiles.

Discussion: BF-QUE NS provides a practical solution to the delivery challenges of poorly soluble anti-cancer drugs.

Conclusion: The prepared BF-QUE NS enhanced the drug solubility and promoted the targeted accumulation in tumors, thereby strengthening the synergistic anti-tumor effect of BF and QUE. BFQUE NS shows potential for clinical application as an anti-liver tumor drug.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信