节奏虫运动中的节奏生成、鲁棒性和控制:建模和分析。

IF 2 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Zahra Aminzare, Jonathan E Rubin
{"title":"节奏虫运动中的节奏生成、鲁棒性和控制:建模和分析。","authors":"Zahra Aminzare, Jonathan E Rubin","doi":"10.1007/s10827-025-00913-6","DOIUrl":null,"url":null,"abstract":"<p><p>Stick insect stepping patterns have been studied for insights about locomotor rhythm generation and control, because the underlying neural system is relatively accessible experimentally and produces a variety of rhythmic outputs. Harnessing the experimental identification of effective interactions among neuronal units involved in stick insect stepping pattern generation, previous studies proposed computational models simulating aspects of stick insect locomotor activity. While these models generate diverse stepping patterns and transitions between them, there has not been an in-depth analysis of the mechanisms underlying their dynamics. In this study, we focus on modeling rhythm generation by the neurons associated with the protraction-retraction, levation-depression, and extension-flexion antagonistic muscle pairs of the mesothoracic (middle) leg of stick insects. Our model features a reduced central pattern generator (CPG) circuit for each joint and includes synaptic interactions among the CPGs; we also consider extensions such as the inclusion of motoneuron pools controlled by the CPG components. The resulting network is described by an 18-dimensional system of ordinary differential equations. We use fast-slow decomposition, projection into interacting phase planes, and a heavy reliance on input-dependent nullclines to analyze this model. Specifically, we identify and eludicate dynamic mechanisms capable of generating a stepping rhythm, with a sequence of biologically constrained phase relationships, in a three-joint stick insect limb model. Furthermore, we explain the robustness to parameter changes and tunability of these patterns. In particular, the model allows us to identify possible mechanisms by which neuromodulatory and top-down effects could tune stepping pattern output frequency.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhythm generation, robustness, and control in stick insect locomotion: modeling and analysis.\",\"authors\":\"Zahra Aminzare, Jonathan E Rubin\",\"doi\":\"10.1007/s10827-025-00913-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stick insect stepping patterns have been studied for insights about locomotor rhythm generation and control, because the underlying neural system is relatively accessible experimentally and produces a variety of rhythmic outputs. Harnessing the experimental identification of effective interactions among neuronal units involved in stick insect stepping pattern generation, previous studies proposed computational models simulating aspects of stick insect locomotor activity. While these models generate diverse stepping patterns and transitions between them, there has not been an in-depth analysis of the mechanisms underlying their dynamics. In this study, we focus on modeling rhythm generation by the neurons associated with the protraction-retraction, levation-depression, and extension-flexion antagonistic muscle pairs of the mesothoracic (middle) leg of stick insects. Our model features a reduced central pattern generator (CPG) circuit for each joint and includes synaptic interactions among the CPGs; we also consider extensions such as the inclusion of motoneuron pools controlled by the CPG components. The resulting network is described by an 18-dimensional system of ordinary differential equations. We use fast-slow decomposition, projection into interacting phase planes, and a heavy reliance on input-dependent nullclines to analyze this model. Specifically, we identify and eludicate dynamic mechanisms capable of generating a stepping rhythm, with a sequence of biologically constrained phase relationships, in a three-joint stick insect limb model. Furthermore, we explain the robustness to parameter changes and tunability of these patterns. In particular, the model allows us to identify possible mechanisms by which neuromodulatory and top-down effects could tune stepping pattern output frequency.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-025-00913-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-025-00913-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

竹节虫的行走模式已经被研究,以了解运动节奏的产生和控制,因为潜在的神经系统在实验上相对容易接近,并产生各种节奏输出。利用实验鉴定参与竹节虫行走模式生成的神经元单元之间的有效相互作用,先前的研究提出了模拟竹节虫运动活动方面的计算模型。虽然这些模型产生了不同的步进模式和它们之间的转换,但尚未对其动态背后的机制进行深入分析。在这项研究中,我们重点研究了竹节虫中胸椎(中)腿的伸-收、提-降和伸-屈拮抗肌对相关神经元产生的节律。我们的模型为每个关节提供了一个简化的中央模式发生器(CPG)电路,并包括CPG之间的突触相互作用;我们还考虑了扩展,如包含由CPG组件控制的运动神经元池。由此产生的网络由一个18维常微分方程系统来描述。我们使用快慢分解,投影到相互作用的相平面,并严重依赖于输入相关的空线来分析这个模型。具体而言,我们确定并阐明了能够在三关节竹节虫肢体模型中产生具有一系列生物学约束相关系的步进节奏的动力学机制。此外,我们解释了这些模式对参数变化的鲁棒性和可调性。特别是,该模型使我们能够确定神经调节和自上而下效应可以调整步进模式输出频率的可能机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rhythm generation, robustness, and control in stick insect locomotion: modeling and analysis.

Stick insect stepping patterns have been studied for insights about locomotor rhythm generation and control, because the underlying neural system is relatively accessible experimentally and produces a variety of rhythmic outputs. Harnessing the experimental identification of effective interactions among neuronal units involved in stick insect stepping pattern generation, previous studies proposed computational models simulating aspects of stick insect locomotor activity. While these models generate diverse stepping patterns and transitions between them, there has not been an in-depth analysis of the mechanisms underlying their dynamics. In this study, we focus on modeling rhythm generation by the neurons associated with the protraction-retraction, levation-depression, and extension-flexion antagonistic muscle pairs of the mesothoracic (middle) leg of stick insects. Our model features a reduced central pattern generator (CPG) circuit for each joint and includes synaptic interactions among the CPGs; we also consider extensions such as the inclusion of motoneuron pools controlled by the CPG components. The resulting network is described by an 18-dimensional system of ordinary differential equations. We use fast-slow decomposition, projection into interacting phase planes, and a heavy reliance on input-dependent nullclines to analyze this model. Specifically, we identify and eludicate dynamic mechanisms capable of generating a stepping rhythm, with a sequence of biologically constrained phase relationships, in a three-joint stick insect limb model. Furthermore, we explain the robustness to parameter changes and tunability of these patterns. In particular, the model allows us to identify possible mechanisms by which neuromodulatory and top-down effects could tune stepping pattern output frequency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信