Hölder网络,以提高对抗鲁棒性。

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dazhi Zhao , Haiyan Li , Qin Luo , Wenguang Hu
{"title":"Hölder网络,以提高对抗鲁棒性。","authors":"Dazhi Zhao ,&nbsp;Haiyan Li ,&nbsp;Qin Luo ,&nbsp;Wenguang Hu","doi":"10.1016/j.neunet.2025.108145","DOIUrl":null,"url":null,"abstract":"<div><div>A small Lipschitz constant can help improve robustness and generalization by restricting the sensitivity of the model to input perturbations. However, overly aggressive constraints may also limit the network’s ability to approximate complex functions. In this paper, we propose the Hölder network, a novel architecture utilizing <span><math><mi>α</mi></math></span>-rectified power units (<span><math><mi>α</mi></math></span>-RePU). This framework generalizes Lipschitz-constrained networks by enforcing <span><math><mi>α</mi></math></span>-Hölder continuity. We theoretically prove that <span><math><mi>α</mi></math></span>-RePU networks are universal approximators of Hölder continuous functions, thereby offering greater flexibility than models with hard Lipschitz constraints. Empirical results show that the Hölder network achieves comparable accuracy and superior adversarial robustness against a wide range of attacks (e.g., PGD and <span><math><msub><mi>l</mi><mi>∞</mi></msub></math></span>) on both image classification and tabular data benchmarks.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"194 ","pages":"Article 108145"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hölder network for improved adversarial robustness\",\"authors\":\"Dazhi Zhao ,&nbsp;Haiyan Li ,&nbsp;Qin Luo ,&nbsp;Wenguang Hu\",\"doi\":\"10.1016/j.neunet.2025.108145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A small Lipschitz constant can help improve robustness and generalization by restricting the sensitivity of the model to input perturbations. However, overly aggressive constraints may also limit the network’s ability to approximate complex functions. In this paper, we propose the Hölder network, a novel architecture utilizing <span><math><mi>α</mi></math></span>-rectified power units (<span><math><mi>α</mi></math></span>-RePU). This framework generalizes Lipschitz-constrained networks by enforcing <span><math><mi>α</mi></math></span>-Hölder continuity. We theoretically prove that <span><math><mi>α</mi></math></span>-RePU networks are universal approximators of Hölder continuous functions, thereby offering greater flexibility than models with hard Lipschitz constraints. Empirical results show that the Hölder network achieves comparable accuracy and superior adversarial robustness against a wide range of attacks (e.g., PGD and <span><math><msub><mi>l</mi><mi>∞</mi></msub></math></span>) on both image classification and tabular data benchmarks.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"194 \",\"pages\":\"Article 108145\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025010251\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025010251","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

一个小的Lipschitz常数可以通过限制模型对输入扰动的敏感性来帮助提高鲁棒性和泛化。然而,过于激进的约束也可能限制网络近似复杂函数的能力。在本文中,我们提出了Hölder网络,这是一种利用α-整流功率单元(α-RePU)的新架构。这个框架通过强制α-Hölder连续性来推广lipschitz约束网络。我们从理论上证明了α-RePU网络是Hölder连续函数的通用逼近器,从而提供了比具有硬Lipschitz约束的模型更大的灵活性。经验结果表明,Hölder网络在图像分类和表格数据基准测试中,对各种攻击(例如PGD和l∞)都达到了相当的准确性和优越的对抗性鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hölder network for improved adversarial robustness
A small Lipschitz constant can help improve robustness and generalization by restricting the sensitivity of the model to input perturbations. However, overly aggressive constraints may also limit the network’s ability to approximate complex functions. In this paper, we propose the Hölder network, a novel architecture utilizing α-rectified power units (α-RePU). This framework generalizes Lipschitz-constrained networks by enforcing α-Hölder continuity. We theoretically prove that α-RePU networks are universal approximators of Hölder continuous functions, thereby offering greater flexibility than models with hard Lipschitz constraints. Empirical results show that the Hölder network achieves comparable accuracy and superior adversarial robustness against a wide range of attacks (e.g., PGD and l) on both image classification and tabular data benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信