基于Fisher信息的单模光纤高精度声事件监测。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-10-01 DOI:10.1364/OL.570619
Catarina S Monteiro, Tiago D Ferreira, Nuno A Silva
{"title":"基于Fisher信息的单模光纤高精度声事件监测。","authors":"Catarina S Monteiro, Tiago D Ferreira, Nuno A Silva","doi":"10.1364/OL.570619","DOIUrl":null,"url":null,"abstract":"<p><p>Polarization optical fiber sensors are based on modifications of fiber birefringence by an external measurand (e.g., strain, pressure, acoustic waves). Yet, this means that different input states of polarization will result in very distinct behaviors, which may or may not be optimal in terms of sensitivity and signal-to-noise ratio. To tackle this challenge, this manuscript presents an optimization technique for the input polarization state using the Fisher information formalism, which allows for achieving maximal precision for a statistically unbiased metric. By first measuring the variation of the Mueller matrix of the optical fiber in response to controlled acoustic perturbations induced by piezo speakers, we compute the corresponding Fisher information operator. Using maximal information states of the Fisher information, it was possible to observe a significant improvement in the performance of the sensor, increasing the signal-to-noise ratio from 4.3 to 37.6 dB, attaining an almost flat response from 1.5 kHz up to 15 kHz. As a proof-of-concept for dynamic audio signal detection, a broadband acoustic signal was also reconstructed with significant gain, demonstrating the usefulness of the introduced formalism for high-precision sensing with polarimetric fiber sensors.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 19","pages":"6117-6120"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-precision acoustic event monitoring in single-mode fibers using Fisher information.\",\"authors\":\"Catarina S Monteiro, Tiago D Ferreira, Nuno A Silva\",\"doi\":\"10.1364/OL.570619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polarization optical fiber sensors are based on modifications of fiber birefringence by an external measurand (e.g., strain, pressure, acoustic waves). Yet, this means that different input states of polarization will result in very distinct behaviors, which may or may not be optimal in terms of sensitivity and signal-to-noise ratio. To tackle this challenge, this manuscript presents an optimization technique for the input polarization state using the Fisher information formalism, which allows for achieving maximal precision for a statistically unbiased metric. By first measuring the variation of the Mueller matrix of the optical fiber in response to controlled acoustic perturbations induced by piezo speakers, we compute the corresponding Fisher information operator. Using maximal information states of the Fisher information, it was possible to observe a significant improvement in the performance of the sensor, increasing the signal-to-noise ratio from 4.3 to 37.6 dB, attaining an almost flat response from 1.5 kHz up to 15 kHz. As a proof-of-concept for dynamic audio signal detection, a broadband acoustic signal was also reconstructed with significant gain, demonstrating the usefulness of the introduced formalism for high-precision sensing with polarimetric fiber sensors.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 19\",\"pages\":\"6117-6120\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.570619\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.570619","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

偏振光纤传感器是基于通过外部测量(如应变、压力、声波)改变光纤双折射的。然而,这意味着不同的极化输入状态将导致非常不同的行为,这在灵敏度和信噪比方面可能是最优的,也可能不是。为了解决这一挑战,本文提出了一种使用Fisher信息形式的输入极化状态优化技术,该技术允许实现统计无偏度量的最大精度。通过测量光纤米勒矩阵对压电扬声器引起的受控声扰动的响应,我们计算了相应的费舍尔信息算子。利用Fisher信息的最大信息状态,可以观察到传感器性能的显着改善,将信噪比从4.3增加到37.6 dB,在1.5 kHz至15 kHz范围内获得几乎平坦的响应。作为动态音频信号检测的概念验证,宽带声信号也以显着增益重建,证明了所引入的形式对于偏振光纤传感器的高精度传感的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-precision acoustic event monitoring in single-mode fibers using Fisher information.

Polarization optical fiber sensors are based on modifications of fiber birefringence by an external measurand (e.g., strain, pressure, acoustic waves). Yet, this means that different input states of polarization will result in very distinct behaviors, which may or may not be optimal in terms of sensitivity and signal-to-noise ratio. To tackle this challenge, this manuscript presents an optimization technique for the input polarization state using the Fisher information formalism, which allows for achieving maximal precision for a statistically unbiased metric. By first measuring the variation of the Mueller matrix of the optical fiber in response to controlled acoustic perturbations induced by piezo speakers, we compute the corresponding Fisher information operator. Using maximal information states of the Fisher information, it was possible to observe a significant improvement in the performance of the sensor, increasing the signal-to-noise ratio from 4.3 to 37.6 dB, attaining an almost flat response from 1.5 kHz up to 15 kHz. As a proof-of-concept for dynamic audio signal detection, a broadband acoustic signal was also reconstructed with significant gain, demonstrating the usefulness of the introduced formalism for high-precision sensing with polarimetric fiber sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信