{"title":"基于单脉冲谱域鬼影成像的宽带相干拉曼光谱。","authors":"Jing Hu, Tianjian Lv, Zhaoyang Wen, Wending Huang, Ming Yan, Heping Zeng","doi":"10.1364/OL.573954","DOIUrl":null,"url":null,"abstract":"<p><p>Broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy plays a vital role in chemical sensing and label-free vibrational imaging, yet conventional methods suffer from limited acquisition speeds and complex detection schemes. Here, we demonstrate high-speed broadband CARS enabled by nonlinear spectral ghost imaging combined with time-stretch dispersive Fourier-transform (TS-DFT) spectroscopy. We exploit modulation instability to generate a stochastic supercontinuum as the Stokes source and a synchronized narrowband pulse as the pump. Reference Stokes spectra are captured at 60.5 MHz via TS-DFT, while anti-Stokes signals are detected using a single non-spectrally resolving photodetector. Correlating these signals enables broadband CARS spectral reconstruction across the fingerprint (600-1600 cm<sup>-1</sup>) and C-H stretching (2600-3400 cm<sup>-1</sup>) regions with 13 cm<sup>-1</sup> resolution and microsecond-scale acquisition times. Our method enables robust signal recovery without the need for spectral resolution in the detection path, facilitating measurements in complex biological and chemical environments.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 19","pages":"6201-6204"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband coherent Raman spectroscopy based on single-pulse spectral-domain ghost imaging.\",\"authors\":\"Jing Hu, Tianjian Lv, Zhaoyang Wen, Wending Huang, Ming Yan, Heping Zeng\",\"doi\":\"10.1364/OL.573954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy plays a vital role in chemical sensing and label-free vibrational imaging, yet conventional methods suffer from limited acquisition speeds and complex detection schemes. Here, we demonstrate high-speed broadband CARS enabled by nonlinear spectral ghost imaging combined with time-stretch dispersive Fourier-transform (TS-DFT) spectroscopy. We exploit modulation instability to generate a stochastic supercontinuum as the Stokes source and a synchronized narrowband pulse as the pump. Reference Stokes spectra are captured at 60.5 MHz via TS-DFT, while anti-Stokes signals are detected using a single non-spectrally resolving photodetector. Correlating these signals enables broadband CARS spectral reconstruction across the fingerprint (600-1600 cm<sup>-1</sup>) and C-H stretching (2600-3400 cm<sup>-1</sup>) regions with 13 cm<sup>-1</sup> resolution and microsecond-scale acquisition times. Our method enables robust signal recovery without the need for spectral resolution in the detection path, facilitating measurements in complex biological and chemical environments.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 19\",\"pages\":\"6201-6204\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.573954\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.573954","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Broadband coherent Raman spectroscopy based on single-pulse spectral-domain ghost imaging.
Broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy plays a vital role in chemical sensing and label-free vibrational imaging, yet conventional methods suffer from limited acquisition speeds and complex detection schemes. Here, we demonstrate high-speed broadband CARS enabled by nonlinear spectral ghost imaging combined with time-stretch dispersive Fourier-transform (TS-DFT) spectroscopy. We exploit modulation instability to generate a stochastic supercontinuum as the Stokes source and a synchronized narrowband pulse as the pump. Reference Stokes spectra are captured at 60.5 MHz via TS-DFT, while anti-Stokes signals are detected using a single non-spectrally resolving photodetector. Correlating these signals enables broadband CARS spectral reconstruction across the fingerprint (600-1600 cm-1) and C-H stretching (2600-3400 cm-1) regions with 13 cm-1 resolution and microsecond-scale acquisition times. Our method enables robust signal recovery without the need for spectral resolution in the detection path, facilitating measurements in complex biological and chemical environments.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.