元学习提供了一个强大的框架,从骨骼上的牙印分析来辨别食肉动物的分类代理:重新评估猫科动物作为能人捕食者的作用。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Manuel Domínguez-Rodrigo, Gabriel Cifuentes-Alcobendas, Marina Vegara-Riquelme, Edgard Camarós, Enrique Baquedano
{"title":"元学习提供了一个强大的框架,从骨骼上的牙印分析来辨别食肉动物的分类代理:重新评估猫科动物作为能人捕食者的作用。","authors":"Manuel Domínguez-Rodrigo, Gabriel Cifuentes-Alcobendas, Marina Vegara-Riquelme, Edgard Camarós, Enrique Baquedano","doi":"10.1098/rsos.250548","DOIUrl":null,"url":null,"abstract":"<p><p>Determining carnivore agency in taphonomic research is crucial for identifying site formation processes and carnivore-hominin interactions that influenced human evolution. Previous deep learning (DL) models classified the four principal carnivore agents affecting African hominins, but exhibited uneven performance due to unbalanced sample sizes. This study introduces a dual method based on few-shot supervised learning (FSSL) and model-agnostic meta-learning (MAML) as an alternative, achieving more consistent accuracy (FSSL: 81.54-83.56%; MAML: 82.56-85.13%), and significantly improving macro-average F1 scores. The best performing MAML model, Xception, reached 85.13% accuracy and an 84% F1 score, with taxon-specific F1 scores of 82% (crocodiles), 83% (hyenas), 88% (leopards) and 83% (lions), making the most precise classification of carnivore-made tooth marks to date. Applying FSSL-MAML ensemble models to <i>Homo habilis</i> specimens OH7 and OH65 from Olduvai Gorge confirms that leopards were preying on these hominins, as they had been earlier on australopithecines. Contrary to our expectations, these findings demonstrate that early <i>Homo</i> was still part of the prey spectrum, reinforcing the idea that the transition to dominant predator status occurred later in human evolution or penecontemporaneously to <i>H. habilis</i> through a different hominin taxon.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 10","pages":"250548"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483632/pdf/","citationCount":"0","resultStr":"{\"title\":\"Meta-learning provides a robust framework to discern taxonomic carnivore agency from the analysis of tooth marks on bone: reassessing the role of felids as predators of <i>Homo habilis</i>.\",\"authors\":\"Manuel Domínguez-Rodrigo, Gabriel Cifuentes-Alcobendas, Marina Vegara-Riquelme, Edgard Camarós, Enrique Baquedano\",\"doi\":\"10.1098/rsos.250548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Determining carnivore agency in taphonomic research is crucial for identifying site formation processes and carnivore-hominin interactions that influenced human evolution. Previous deep learning (DL) models classified the four principal carnivore agents affecting African hominins, but exhibited uneven performance due to unbalanced sample sizes. This study introduces a dual method based on few-shot supervised learning (FSSL) and model-agnostic meta-learning (MAML) as an alternative, achieving more consistent accuracy (FSSL: 81.54-83.56%; MAML: 82.56-85.13%), and significantly improving macro-average F1 scores. The best performing MAML model, Xception, reached 85.13% accuracy and an 84% F1 score, with taxon-specific F1 scores of 82% (crocodiles), 83% (hyenas), 88% (leopards) and 83% (lions), making the most precise classification of carnivore-made tooth marks to date. Applying FSSL-MAML ensemble models to <i>Homo habilis</i> specimens OH7 and OH65 from Olduvai Gorge confirms that leopards were preying on these hominins, as they had been earlier on australopithecines. Contrary to our expectations, these findings demonstrate that early <i>Homo</i> was still part of the prey spectrum, reinforcing the idea that the transition to dominant predator status occurred later in human evolution or penecontemporaneously to <i>H. habilis</i> through a different hominin taxon.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"12 10\",\"pages\":\"250548\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.250548\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250548","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在类人学研究中,确定食肉动物的代理作用对于确定影响人类进化的遗址形成过程和食肉动物与人族的相互作用至关重要。以前的深度学习(DL)模型对影响非洲古人类的四种主要食肉动物进行了分类,但由于样本量不平衡,表现出不均匀的性能。本研究引入了基于few-shot supervised learning (FSSL)和model-agnostic meta-learning (MAML)的双重方法作为替代,获得了更一致的准确率(FSSL: 81.54-83.56%; MAML: 82.56-85.13%),并显著提高了宏观平均F1分数。表现最好的MAML模型Xception准确率达到85.13%,F1得分为84%,其中分类群特异性F1得分为82%(鳄鱼),83%(鬣狗),88%(豹子)和83%(狮子),是迄今为止最精确的食肉动物牙印分类。将fsl - maml集合模型应用于来自Olduvai峡谷的能人标本OH7和OH65,证实了豹子在捕食这些人类,就像它们早先捕食南方古猿一样。与我们的预期相反,这些发现表明,早期人属仍然是猎物谱系的一部分,强化了人类进化后期向优势捕食者地位过渡的观点,或者是通过不同的人族分类单元向能人过渡的准同时期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Meta-learning provides a robust framework to discern taxonomic carnivore agency from the analysis of tooth marks on bone: reassessing the role of felids as predators of <i>Homo habilis</i>.

Meta-learning provides a robust framework to discern taxonomic carnivore agency from the analysis of tooth marks on bone: reassessing the role of felids as predators of Homo habilis.

Determining carnivore agency in taphonomic research is crucial for identifying site formation processes and carnivore-hominin interactions that influenced human evolution. Previous deep learning (DL) models classified the four principal carnivore agents affecting African hominins, but exhibited uneven performance due to unbalanced sample sizes. This study introduces a dual method based on few-shot supervised learning (FSSL) and model-agnostic meta-learning (MAML) as an alternative, achieving more consistent accuracy (FSSL: 81.54-83.56%; MAML: 82.56-85.13%), and significantly improving macro-average F1 scores. The best performing MAML model, Xception, reached 85.13% accuracy and an 84% F1 score, with taxon-specific F1 scores of 82% (crocodiles), 83% (hyenas), 88% (leopards) and 83% (lions), making the most precise classification of carnivore-made tooth marks to date. Applying FSSL-MAML ensemble models to Homo habilis specimens OH7 and OH65 from Olduvai Gorge confirms that leopards were preying on these hominins, as they had been earlier on australopithecines. Contrary to our expectations, these findings demonstrate that early Homo was still part of the prey spectrum, reinforcing the idea that the transition to dominant predator status occurred later in human evolution or penecontemporaneously to H. habilis through a different hominin taxon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信