利用CNLSE-Layer增强的光谱神经算子预测双折射光纤中的孤子捕获。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-10-01 DOI:10.1364/OL.572368
Qi Li, Kequan Shi, Bin Luo, Shui Yu, Hongna Zhu, Bangji Wang
{"title":"利用CNLSE-Layer增强的光谱神经算子预测双折射光纤中的孤子捕获。","authors":"Qi Li, Kequan Shi, Bin Luo, Shui Yu, Hongna Zhu, Bangji Wang","doi":"10.1364/OL.572368","DOIUrl":null,"url":null,"abstract":"<p><p>Soliton trapping is a crucial phenomenon among vector optical solitons in a birefringent fiber. To predict the generation of soliton trapping, we embed the coupled nonlinear Schrödinger equations (CNLSE) as one layer into the neural network. Here, our model employs the CNLSE-Layer to model the cross-phase modulation operator, with the spectral neural operator for modelling the group velocity dispersion operator. The proposed method has the potential to break the bottleneck of the high computational time for physics-informed deep learning methods by adding the physical information in the loss function. This work presents a novel, to the best of our knowledge, design paradigm for embedding the physics information in neural networks.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 19","pages":"6189-6192"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the soliton trapping in birefringence optical fibers via spectral neural operator enhanced by CNLSE-Layer.\",\"authors\":\"Qi Li, Kequan Shi, Bin Luo, Shui Yu, Hongna Zhu, Bangji Wang\",\"doi\":\"10.1364/OL.572368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soliton trapping is a crucial phenomenon among vector optical solitons in a birefringent fiber. To predict the generation of soliton trapping, we embed the coupled nonlinear Schrödinger equations (CNLSE) as one layer into the neural network. Here, our model employs the CNLSE-Layer to model the cross-phase modulation operator, with the spectral neural operator for modelling the group velocity dispersion operator. The proposed method has the potential to break the bottleneck of the high computational time for physics-informed deep learning methods by adding the physical information in the loss function. This work presents a novel, to the best of our knowledge, design paradigm for embedding the physics information in neural networks.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 19\",\"pages\":\"6189-6192\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.572368\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.572368","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

孤子捕获是双折射光纤中矢量光孤子中的一个重要现象。为了预测孤子捕获的产生,我们将耦合非线性Schrödinger方程(CNLSE)作为一层嵌入到神经网络中。在这里,我们的模型使用CNLSE-Layer来建模交叉相位调制算子,使用谱神经算子来建模群速度色散算子。该方法通过在损失函数中加入物理信息,有可能打破物理信息深度学习方法计算时间长的瓶颈。这项工作提出了一种新颖的,据我们所知,在神经网络中嵌入物理信息的设计范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the soliton trapping in birefringence optical fibers via spectral neural operator enhanced by CNLSE-Layer.

Soliton trapping is a crucial phenomenon among vector optical solitons in a birefringent fiber. To predict the generation of soliton trapping, we embed the coupled nonlinear Schrödinger equations (CNLSE) as one layer into the neural network. Here, our model employs the CNLSE-Layer to model the cross-phase modulation operator, with the spectral neural operator for modelling the group velocity dispersion operator. The proposed method has the potential to break the bottleneck of the high computational time for physics-informed deep learning methods by adding the physical information in the loss function. This work presents a novel, to the best of our knowledge, design paradigm for embedding the physics information in neural networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信