组织标本的偏振辅助多域虚拟组织病理学染色。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-10-01 DOI:10.1364/OL.576905
Mingzhou Jiang, Jiahao Fan, Nan Zeng, Xinxian Zhang, Mickaël Li, Rui Huang, Shaoxiong Liu, Hui Ma, Chao He, Honghui He
{"title":"组织标本的偏振辅助多域虚拟组织病理学染色。","authors":"Mingzhou Jiang, Jiahao Fan, Nan Zeng, Xinxian Zhang, Mickaël Li, Rui Huang, Shaoxiong Liu, Hui Ma, Chao He, Honghui He","doi":"10.1364/OL.576905","DOIUrl":null,"url":null,"abstract":"<p><p>Polarization imaging exhibits high sensitivity to tissue structures and is now widely used in biomedical studies and clinical practice. In particular, by integrating polarization information provided by Mueller matrix microscopy, generative adversarial networks have demonstrated effective domain-to-domain virtual staining capabilities. In this Letter, we propose a polarization-assisted multi-domain virtual histopathological staining network, Polar-starGAN, which employs tissue information provided by Mueller matrix polarization images for tissue specimen staining. The unsupervised multi-domain staining results on human gastrointestinal tissue slices confirm that Polar-starGAN can perform cross-domain transformation from polarization images acquired from hematoxylin and eosin (H&E)-stained slides to three other widely used staining methods. Through a customized unsupervised generative adversarial training strategy, the model generates virtually stained images with high structural consistency and color tones closely matching real slides. This provides an effective auxiliary tool for digital pathology and clinical histopathological diagnosis.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 19","pages":"6016-6019"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization-assisted multi-domain virtual histopathological staining of tissue specimens.\",\"authors\":\"Mingzhou Jiang, Jiahao Fan, Nan Zeng, Xinxian Zhang, Mickaël Li, Rui Huang, Shaoxiong Liu, Hui Ma, Chao He, Honghui He\",\"doi\":\"10.1364/OL.576905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polarization imaging exhibits high sensitivity to tissue structures and is now widely used in biomedical studies and clinical practice. In particular, by integrating polarization information provided by Mueller matrix microscopy, generative adversarial networks have demonstrated effective domain-to-domain virtual staining capabilities. In this Letter, we propose a polarization-assisted multi-domain virtual histopathological staining network, Polar-starGAN, which employs tissue information provided by Mueller matrix polarization images for tissue specimen staining. The unsupervised multi-domain staining results on human gastrointestinal tissue slices confirm that Polar-starGAN can perform cross-domain transformation from polarization images acquired from hematoxylin and eosin (H&E)-stained slides to three other widely used staining methods. Through a customized unsupervised generative adversarial training strategy, the model generates virtually stained images with high structural consistency and color tones closely matching real slides. This provides an effective auxiliary tool for digital pathology and clinical histopathological diagnosis.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 19\",\"pages\":\"6016-6019\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.576905\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.576905","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

偏振成像对组织结构具有很高的灵敏度,目前已广泛应用于生物医学研究和临床实践。特别是,通过整合穆勒矩阵显微镜提供的极化信息,生成对抗网络已经证明了有效的域到域虚拟染色能力。在这篇文章中,我们提出了一个偏振辅助的多域虚拟组织病理学染色网络,Polar-starGAN,它利用穆勒矩阵偏振图像提供的组织信息进行组织标本染色。人类胃肠道组织切片的无监督多域染色结果证实,Polar-starGAN可以从苏木精和伊红(H&E)染色切片获得的极化图像进行跨域转换,以其他三种广泛使用的染色方法。通过定制的无监督生成对抗训练策略,该模型生成具有高结构一致性和色调与真实幻灯片密切匹配的虚拟染色图像。这为数字病理和临床组织病理诊断提供了有效的辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polarization-assisted multi-domain virtual histopathological staining of tissue specimens.

Polarization imaging exhibits high sensitivity to tissue structures and is now widely used in biomedical studies and clinical practice. In particular, by integrating polarization information provided by Mueller matrix microscopy, generative adversarial networks have demonstrated effective domain-to-domain virtual staining capabilities. In this Letter, we propose a polarization-assisted multi-domain virtual histopathological staining network, Polar-starGAN, which employs tissue information provided by Mueller matrix polarization images for tissue specimen staining. The unsupervised multi-domain staining results on human gastrointestinal tissue slices confirm that Polar-starGAN can perform cross-domain transformation from polarization images acquired from hematoxylin and eosin (H&E)-stained slides to three other widely used staining methods. Through a customized unsupervised generative adversarial training strategy, the model generates virtually stained images with high structural consistency and color tones closely matching real slides. This provides an effective auxiliary tool for digital pathology and clinical histopathological diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信