通过分布式大脑记录的迁移学习可以实现可靠的语音解码。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Aditya Singh, Tessy Thomas, Jinlong Li, Greg Hickok, Xaq Pitkow, Nitin Tandon
{"title":"通过分布式大脑记录的迁移学习可以实现可靠的语音解码。","authors":"Aditya Singh, Tessy Thomas, Jinlong Li, Greg Hickok, Xaq Pitkow, Nitin Tandon","doi":"10.1038/s41467-025-63825-0","DOIUrl":null,"url":null,"abstract":"<p><p>Speech brain-computer interfaces (BCIs) combine neural recordings with large language models to achieve real-time intelligible speech. However, these decoders rely on dense, intact cortical coverage and are challenging to scale across individuals with heterogeneous brain organization. To derive scalable transfer learning strategies for neural speech decoding, we used minimally invasive stereo-electroencephalography recordings in a large cohort performing a demanding speech motor task. A sequence-to-sequence model enabled decoding of variable-length phonemic sequences prior to and during articulation. This enabled development of a cross-subject transfer learning framework to isolate shared latent manifolds while enabling individual model initialization. The group-derived decoder significantly outperformed models trained on individual data alone, enabling decoding robustness despite variable coverage and activation. These results highlight a pathway toward generalizable neural prostheses for speech and language disorders by leveraging large-scale intracranial datasets with distributed spatial sampling and shared task demands.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8749"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning via distributed brain recordings enables reliable speech decoding.\",\"authors\":\"Aditya Singh, Tessy Thomas, Jinlong Li, Greg Hickok, Xaq Pitkow, Nitin Tandon\",\"doi\":\"10.1038/s41467-025-63825-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Speech brain-computer interfaces (BCIs) combine neural recordings with large language models to achieve real-time intelligible speech. However, these decoders rely on dense, intact cortical coverage and are challenging to scale across individuals with heterogeneous brain organization. To derive scalable transfer learning strategies for neural speech decoding, we used minimally invasive stereo-electroencephalography recordings in a large cohort performing a demanding speech motor task. A sequence-to-sequence model enabled decoding of variable-length phonemic sequences prior to and during articulation. This enabled development of a cross-subject transfer learning framework to isolate shared latent manifolds while enabling individual model initialization. The group-derived decoder significantly outperformed models trained on individual data alone, enabling decoding robustness despite variable coverage and activation. These results highlight a pathway toward generalizable neural prostheses for speech and language disorders by leveraging large-scale intracranial datasets with distributed spatial sampling and shared task demands.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"8749\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63825-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63825-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

语音脑机接口(bci)将神经记录与大型语言模型相结合,实现实时可理解语音。然而,这些解码器依赖于密集的、完整的皮层覆盖,并且很难在具有异质大脑组织的个体中进行扩展。为了获得可扩展的神经语音解码迁移学习策略,我们在执行高要求语音运动任务的大型队列中使用了微创立体脑电图记录。一个序列到序列的模型能够在发音之前和发音过程中解码可变长度的音位序列。这使得跨学科迁移学习框架的开发能够隔离共享的潜在流形,同时支持单个模型初始化。组衍生解码器明显优于单独训练的单个数据模型,尽管覆盖范围和激活程度不同,但仍能实现解码的鲁棒性。这些结果强调了利用分布式空间采样和共享任务需求的大规模颅内数据集来实现语音和语言障碍的可推广神经假体的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning via distributed brain recordings enables reliable speech decoding.

Speech brain-computer interfaces (BCIs) combine neural recordings with large language models to achieve real-time intelligible speech. However, these decoders rely on dense, intact cortical coverage and are challenging to scale across individuals with heterogeneous brain organization. To derive scalable transfer learning strategies for neural speech decoding, we used minimally invasive stereo-electroencephalography recordings in a large cohort performing a demanding speech motor task. A sequence-to-sequence model enabled decoding of variable-length phonemic sequences prior to and during articulation. This enabled development of a cross-subject transfer learning framework to isolate shared latent manifolds while enabling individual model initialization. The group-derived decoder significantly outperformed models trained on individual data alone, enabling decoding robustness despite variable coverage and activation. These results highlight a pathway toward generalizable neural prostheses for speech and language disorders by leveraging large-scale intracranial datasets with distributed spatial sampling and shared task demands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信