MetaflowX:用于多策略宏基因组分析的可扩展且资源高效的工作流。

IF 13.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yan Xia, Lifeng Liang, Xiaokai Wang, Zixiang Chen, Jin Liu, Ying Yang, Hailiang Xie, Zhimin Ding, Xiaoting Huang, Shibin Long, Zhifeng Wang, Xiaoqiang Xu, Chao Ding, Qiyi Chen, Qiang Feng
{"title":"MetaflowX:用于多策略宏基因组分析的可扩展且资源高效的工作流。","authors":"Yan Xia, Lifeng Liang, Xiaokai Wang, Zixiang Chen, Jin Liu, Ying Yang, Hailiang Xie, Zhimin Ding, Xiaoting Huang, Shibin Long, Zhifeng Wang, Xiaoqiang Xu, Chao Ding, Qiyi Chen, Qiang Feng","doi":"10.1093/nar/gkaf954","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiomes play crucial roles in diverse ecosystems, spanning environmental, agricultural, and human health domains. However, in-depth metagenomic data analysis presents significant technical and resource challenges, particularly at scale. Existing computational pipelines are typically limited to either reference-based or reference-free approaches and exhibit inefficiencies in process large datasets. Here, we introduce MetaflowX (https://github.com/01life/MetaflowX), an open-resource workflow integrating both analytical paradigms for enhanced metagenomic investigations. This modular framework encompasses short-read quality control, rapid microbial profiling, hybrid contig assembly and binning, high-quality metagenome-assembled genome (MAG) identification, as well as bin refinement and reassembly. Benchmarking tests showed that MetaflowX completed full metagenomic analyses up to 14-fold faster and with 38% less disk usage than existing workflows. It also recovered the highest number of high-quality and taxonomically diverse MAGs. A dedicated reassembly module further improved MAG quality, increasing completeness by 5.6% and reducing contamination by 53% on average. Functional annotation modules enable detection of key features, including virulence and antibiotic resistance genes. Designed for extensibility, MetaflowX provides an efficient solution addressing current and emerging demands in large-scale metagenomic research.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 18","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12489473/pdf/","citationCount":"0","resultStr":"{\"title\":\"MetaflowX: a scalable and resource-efficient workflow for multi-strategy metagenomic analysis.\",\"authors\":\"Yan Xia, Lifeng Liang, Xiaokai Wang, Zixiang Chen, Jin Liu, Ying Yang, Hailiang Xie, Zhimin Ding, Xiaoting Huang, Shibin Long, Zhifeng Wang, Xiaoqiang Xu, Chao Ding, Qiyi Chen, Qiang Feng\",\"doi\":\"10.1093/nar/gkaf954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbiomes play crucial roles in diverse ecosystems, spanning environmental, agricultural, and human health domains. However, in-depth metagenomic data analysis presents significant technical and resource challenges, particularly at scale. Existing computational pipelines are typically limited to either reference-based or reference-free approaches and exhibit inefficiencies in process large datasets. Here, we introduce MetaflowX (https://github.com/01life/MetaflowX), an open-resource workflow integrating both analytical paradigms for enhanced metagenomic investigations. This modular framework encompasses short-read quality control, rapid microbial profiling, hybrid contig assembly and binning, high-quality metagenome-assembled genome (MAG) identification, as well as bin refinement and reassembly. Benchmarking tests showed that MetaflowX completed full metagenomic analyses up to 14-fold faster and with 38% less disk usage than existing workflows. It also recovered the highest number of high-quality and taxonomically diverse MAGs. A dedicated reassembly module further improved MAG quality, increasing completeness by 5.6% and reducing contamination by 53% on average. Functional annotation modules enable detection of key features, including virulence and antibiotic resistance genes. Designed for extensibility, MetaflowX provides an efficient solution addressing current and emerging demands in large-scale metagenomic research.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 18\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12489473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf954\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf954","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物组在不同的生态系统中发挥着至关重要的作用,跨越环境、农业和人类健康领域。然而,深入的宏基因组数据分析提出了重大的技术和资源挑战,特别是在规模上。现有的计算管道通常限于基于引用或无引用的方法,并且在处理大型数据集时表现出低效率。在这里,我们介绍MetaflowX (https://github.com/01life/MetaflowX),这是一个集成了两种分析范式的开放资源工作流,用于增强宏基因组研究。该模块化框架包括短读质量控制,快速微生物分析,混合基因组组装和分类,高质量宏基因组组装基因组(MAG)鉴定,以及bin精炼和重组。基准测试表明,与现有工作流程相比,MetaflowX完成全宏基因组分析的速度提高了14倍,磁盘使用量减少了38%。它还恢复了数量最多的高质量和分类多样化的mag。专用的重组模块进一步提高了MAG质量,完整性提高了5.6%,平均减少了53%的污染。功能注释模块能够检测关键特征,包括毒力和抗生素抗性基因。为可扩展性而设计,MetaflowX提供了一个有效的解决方案,解决了大规模宏基因组研究中当前和新兴的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MetaflowX: a scalable and resource-efficient workflow for multi-strategy metagenomic analysis.

Microbiomes play crucial roles in diverse ecosystems, spanning environmental, agricultural, and human health domains. However, in-depth metagenomic data analysis presents significant technical and resource challenges, particularly at scale. Existing computational pipelines are typically limited to either reference-based or reference-free approaches and exhibit inefficiencies in process large datasets. Here, we introduce MetaflowX (https://github.com/01life/MetaflowX), an open-resource workflow integrating both analytical paradigms for enhanced metagenomic investigations. This modular framework encompasses short-read quality control, rapid microbial profiling, hybrid contig assembly and binning, high-quality metagenome-assembled genome (MAG) identification, as well as bin refinement and reassembly. Benchmarking tests showed that MetaflowX completed full metagenomic analyses up to 14-fold faster and with 38% less disk usage than existing workflows. It also recovered the highest number of high-quality and taxonomically diverse MAGs. A dedicated reassembly module further improved MAG quality, increasing completeness by 5.6% and reducing contamination by 53% on average. Functional annotation modules enable detection of key features, including virulence and antibiotic resistance genes. Designed for extensibility, MetaflowX provides an efficient solution addressing current and emerging demands in large-scale metagenomic research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信