B Q Lv, Yifan Su, Alfred Zong, Qiaomei Liu, Dong Wu, Noah F Q Yuan, Zhengwei Nie, Jiarui Li, Suchismita Sarker, Sheng Meng, Jacob P C Ruff, N L Wang, Nuh Gedik
{"title":"堆积不相称电荷密度波的大波纹上部结构。","authors":"B Q Lv, Yifan Su, Alfred Zong, Qiaomei Liu, Dong Wu, Noah F Q Yuan, Zhengwei Nie, Jiarui Li, Suchismita Sarker, Sheng Meng, Jacob P C Ruff, N L Wang, Nuh Gedik","doi":"10.1038/s41563-025-02360-1","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in heterostructure fabrication have opened new frontiers in moiré physics. Here we extend moiré engineering from artificially assembled thin flakes with mismatched lattice parameters to materials that host incommensurate orders, presenting a long-period moiré superlattice in a layered charge-density-wave compound, EuTe<sub>4</sub>. Using high-momentum-resolution X-ray diffraction, we found two coexisting incommensurate charge density waves with slightly mismatched in-plane wavevectors. The interaction between these two charge density waves leads to joint commensuration with the lattice and a moiré superstructure with a period of ~13.6 nm, offering key insights into the unique properties of EuTe<sub>4</sub>, such as the temperature-invariant incommensurate wavevectors and unconventional in-gap states. Owing to interlayer phase shifts, the moiré superstructure exhibits a clear thermal hysteresis, accounting for the large hysteresis in electrical resistivity and numerous metastable states. Our findings open new directions for moiré engineering based on incommensurate lattices and highlight the important role of interlayer ordering in stacked structures.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":" ","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large moiré superstructure of stacked incommensurate charge density waves.\",\"authors\":\"B Q Lv, Yifan Su, Alfred Zong, Qiaomei Liu, Dong Wu, Noah F Q Yuan, Zhengwei Nie, Jiarui Li, Suchismita Sarker, Sheng Meng, Jacob P C Ruff, N L Wang, Nuh Gedik\",\"doi\":\"10.1038/s41563-025-02360-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in heterostructure fabrication have opened new frontiers in moiré physics. Here we extend moiré engineering from artificially assembled thin flakes with mismatched lattice parameters to materials that host incommensurate orders, presenting a long-period moiré superlattice in a layered charge-density-wave compound, EuTe<sub>4</sub>. Using high-momentum-resolution X-ray diffraction, we found two coexisting incommensurate charge density waves with slightly mismatched in-plane wavevectors. The interaction between these two charge density waves leads to joint commensuration with the lattice and a moiré superstructure with a period of ~13.6 nm, offering key insights into the unique properties of EuTe<sub>4</sub>, such as the temperature-invariant incommensurate wavevectors and unconventional in-gap states. Owing to interlayer phase shifts, the moiré superstructure exhibits a clear thermal hysteresis, accounting for the large hysteresis in electrical resistivity and numerous metastable states. Our findings open new directions for moiré engineering based on incommensurate lattices and highlight the important role of interlayer ordering in stacked structures.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":38.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02360-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02360-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Large moiré superstructure of stacked incommensurate charge density waves.
Advances in heterostructure fabrication have opened new frontiers in moiré physics. Here we extend moiré engineering from artificially assembled thin flakes with mismatched lattice parameters to materials that host incommensurate orders, presenting a long-period moiré superlattice in a layered charge-density-wave compound, EuTe4. Using high-momentum-resolution X-ray diffraction, we found two coexisting incommensurate charge density waves with slightly mismatched in-plane wavevectors. The interaction between these two charge density waves leads to joint commensuration with the lattice and a moiré superstructure with a period of ~13.6 nm, offering key insights into the unique properties of EuTe4, such as the temperature-invariant incommensurate wavevectors and unconventional in-gap states. Owing to interlayer phase shifts, the moiré superstructure exhibits a clear thermal hysteresis, accounting for the large hysteresis in electrical resistivity and numerous metastable states. Our findings open new directions for moiré engineering based on incommensurate lattices and highlight the important role of interlayer ordering in stacked structures.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.