堆积不相称电荷密度波的大波纹上部结构。

IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
B Q Lv, Yifan Su, Alfred Zong, Qiaomei Liu, Dong Wu, Noah F Q Yuan, Zhengwei Nie, Jiarui Li, Suchismita Sarker, Sheng Meng, Jacob P C Ruff, N L Wang, Nuh Gedik
{"title":"堆积不相称电荷密度波的大波纹上部结构。","authors":"B Q Lv, Yifan Su, Alfred Zong, Qiaomei Liu, Dong Wu, Noah F Q Yuan, Zhengwei Nie, Jiarui Li, Suchismita Sarker, Sheng Meng, Jacob P C Ruff, N L Wang, Nuh Gedik","doi":"10.1038/s41563-025-02360-1","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in heterostructure fabrication have opened new frontiers in moiré physics. Here we extend moiré engineering from artificially assembled thin flakes with mismatched lattice parameters to materials that host incommensurate orders, presenting a long-period moiré superlattice in a layered charge-density-wave compound, EuTe<sub>4</sub>. Using high-momentum-resolution X-ray diffraction, we found two coexisting incommensurate charge density waves with slightly mismatched in-plane wavevectors. The interaction between these two charge density waves leads to joint commensuration with the lattice and a moiré superstructure with a period of ~13.6 nm, offering key insights into the unique properties of EuTe<sub>4</sub>, such as the temperature-invariant incommensurate wavevectors and unconventional in-gap states. Owing to interlayer phase shifts, the moiré superstructure exhibits a clear thermal hysteresis, accounting for the large hysteresis in electrical resistivity and numerous metastable states. Our findings open new directions for moiré engineering based on incommensurate lattices and highlight the important role of interlayer ordering in stacked structures.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":" ","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large moiré superstructure of stacked incommensurate charge density waves.\",\"authors\":\"B Q Lv, Yifan Su, Alfred Zong, Qiaomei Liu, Dong Wu, Noah F Q Yuan, Zhengwei Nie, Jiarui Li, Suchismita Sarker, Sheng Meng, Jacob P C Ruff, N L Wang, Nuh Gedik\",\"doi\":\"10.1038/s41563-025-02360-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in heterostructure fabrication have opened new frontiers in moiré physics. Here we extend moiré engineering from artificially assembled thin flakes with mismatched lattice parameters to materials that host incommensurate orders, presenting a long-period moiré superlattice in a layered charge-density-wave compound, EuTe<sub>4</sub>. Using high-momentum-resolution X-ray diffraction, we found two coexisting incommensurate charge density waves with slightly mismatched in-plane wavevectors. The interaction between these two charge density waves leads to joint commensuration with the lattice and a moiré superstructure with a period of ~13.6 nm, offering key insights into the unique properties of EuTe<sub>4</sub>, such as the temperature-invariant incommensurate wavevectors and unconventional in-gap states. Owing to interlayer phase shifts, the moiré superstructure exhibits a clear thermal hysteresis, accounting for the large hysteresis in electrical resistivity and numerous metastable states. Our findings open new directions for moiré engineering based on incommensurate lattices and highlight the important role of interlayer ordering in stacked structures.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":38.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02360-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02360-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

异质结构制造的进步开辟了莫尔莫尔物理学的新领域。在这里,我们将莫尔条纹工程从具有不匹配晶格参数的人工组装薄片扩展到具有不匹配顺序的材料,在层状电荷密度波化合物EuTe4中呈现出长周期莫尔条纹超晶格。利用高动量分辨x射线衍射,我们发现了两种共存的不相称电荷密度波,其面内波矢略有不匹配。这两种电荷密度波之间的相互作用导致了与晶格和一个周期为~13.6 nm的摩尔超结构的联合约约,为了解EuTe4的独特性质(如温度不变的不相称波和非常规的隙内态)提供了关键的见解。由于层间相移,波纹上层结构表现出明显的热滞后,这是由于电阻率的大滞后和大量亚稳态造成的。我们的发现为基于不相称晶格的波纹工程开辟了新的方向,并突出了层间有序在堆叠结构中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large moiré superstructure of stacked incommensurate charge density waves.

Advances in heterostructure fabrication have opened new frontiers in moiré physics. Here we extend moiré engineering from artificially assembled thin flakes with mismatched lattice parameters to materials that host incommensurate orders, presenting a long-period moiré superlattice in a layered charge-density-wave compound, EuTe4. Using high-momentum-resolution X-ray diffraction, we found two coexisting incommensurate charge density waves with slightly mismatched in-plane wavevectors. The interaction between these two charge density waves leads to joint commensuration with the lattice and a moiré superstructure with a period of ~13.6 nm, offering key insights into the unique properties of EuTe4, such as the temperature-invariant incommensurate wavevectors and unconventional in-gap states. Owing to interlayer phase shifts, the moiré superstructure exhibits a clear thermal hysteresis, accounting for the large hysteresis in electrical resistivity and numerous metastable states. Our findings open new directions for moiré engineering based on incommensurate lattices and highlight the important role of interlayer ordering in stacked structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信