肥厚性心肌病突变Y115H和E497D变弹性地破坏人β-心肌蛋白的折叠状态。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Neha Nandwani, Debanjan Bhowmik, Camille Glaser, Matthew Carter Childers, Rama Reddy Goluguri, Aminah Dawood, Michael Regnier, Anne Houdusse, James A Spudich, Kathleen M Ruppel
{"title":"肥厚性心肌病突变Y115H和E497D变弹性地破坏人β-心肌蛋白的折叠状态。","authors":"Neha Nandwani, Debanjan Bhowmik, Camille Glaser, Matthew Carter Childers, Rama Reddy Goluguri, Aminah Dawood, Michael Regnier, Anne Houdusse, James A Spudich, Kathleen M Ruppel","doi":"10.1038/s41467-025-63816-1","DOIUrl":null,"url":null,"abstract":"<p><p>At the molecular level, clinical hypercontractility associated with many hypertrophic cardiomyopathy (HCM)-causing mutations in β-cardiac myosin appears to be driven by their disruptive effect on the energy-conserving, folded-back 'OFF'-state of myosin, which results in increased number of heads free to interact with actin and produce force. While many characterized mutations likely act by directly perturbing intramolecular interfaces stabilizing the OFF-state, others may function allosterically by altering conformational states of the myosin motor. We investigate two such allosteric HCM mutations, Y115H (Transducer) and E497D (Relay helix), which do not directly contact OFF-state interfaces. Biochemical analyses and high-resolution crystallography reveal that both mutations increase active myosin head availability likely by destabilizing the pre-powerstroke conformation required for OFF-state formation. We propose that destabilization of the folded-back state of myosin, either directly or allosterically, represents a common molecular mechanism underlying hypercontractility in HCM across a broader spectrum of pathogenic mutations than previously recognized.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8751"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypertrophic cardiomyopathy mutations Y115H and E497D disrupt the folded-back state of human β-cardiac myosin allosterically.\",\"authors\":\"Neha Nandwani, Debanjan Bhowmik, Camille Glaser, Matthew Carter Childers, Rama Reddy Goluguri, Aminah Dawood, Michael Regnier, Anne Houdusse, James A Spudich, Kathleen M Ruppel\",\"doi\":\"10.1038/s41467-025-63816-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>At the molecular level, clinical hypercontractility associated with many hypertrophic cardiomyopathy (HCM)-causing mutations in β-cardiac myosin appears to be driven by their disruptive effect on the energy-conserving, folded-back 'OFF'-state of myosin, which results in increased number of heads free to interact with actin and produce force. While many characterized mutations likely act by directly perturbing intramolecular interfaces stabilizing the OFF-state, others may function allosterically by altering conformational states of the myosin motor. We investigate two such allosteric HCM mutations, Y115H (Transducer) and E497D (Relay helix), which do not directly contact OFF-state interfaces. Biochemical analyses and high-resolution crystallography reveal that both mutations increase active myosin head availability likely by destabilizing the pre-powerstroke conformation required for OFF-state formation. We propose that destabilization of the folded-back state of myosin, either directly or allosterically, represents a common molecular mechanism underlying hypercontractility in HCM across a broader spectrum of pathogenic mutations than previously recognized.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"8751\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63816-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63816-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在分子水平上,与许多肥厚性心肌病(HCM)引起的β-心肌肌球蛋白突变相关的临床高收缩性似乎是由它们对肌球蛋白的能量保存,折叠的“关闭”状态的破坏性作用驱动的,这导致更多的头部自由与肌动蛋白相互作用并产生力。虽然许多特征突变可能通过直接干扰分子内界面稳定off状态而起作用,但其他突变可能通过改变肌球蛋白运动的构象状态而起变构作用。我们研究了两种这样的变构HCM突变,Y115H(换能器)和E497D(继电器螺旋),它们不直接接触关闭状态接口。生化分析和高分辨率晶体学显示,这两种突变可能通过破坏off状态形成所需的动力冲程前构象而增加了肌球蛋白头部的活性。我们提出肌凝蛋白折叠状态的不稳定,无论是直接的还是变构的,都代表了HCM中高收缩性的共同分子机制,其范围比以前认识到的更广泛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypertrophic cardiomyopathy mutations Y115H and E497D disrupt the folded-back state of human β-cardiac myosin allosterically.

At the molecular level, clinical hypercontractility associated with many hypertrophic cardiomyopathy (HCM)-causing mutations in β-cardiac myosin appears to be driven by their disruptive effect on the energy-conserving, folded-back 'OFF'-state of myosin, which results in increased number of heads free to interact with actin and produce force. While many characterized mutations likely act by directly perturbing intramolecular interfaces stabilizing the OFF-state, others may function allosterically by altering conformational states of the myosin motor. We investigate two such allosteric HCM mutations, Y115H (Transducer) and E497D (Relay helix), which do not directly contact OFF-state interfaces. Biochemical analyses and high-resolution crystallography reveal that both mutations increase active myosin head availability likely by destabilizing the pre-powerstroke conformation required for OFF-state formation. We propose that destabilization of the folded-back state of myosin, either directly or allosterically, represents a common molecular mechanism underlying hypercontractility in HCM across a broader spectrum of pathogenic mutations than previously recognized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信