Izabella Tambones, Amin Sagar, Pavla Vankova, Dmitry Loginov, Coralie Carivenc, Natacha Rochel, William Bourguet, Petr Man, Pau Bernadó, Albane le Maire
{"title":"DNA、配体和转录共调节因子对视黄酸受体RAR/RXR控制的新结构见解。","authors":"Izabella Tambones, Amin Sagar, Pavla Vankova, Dmitry Loginov, Coralie Carivenc, Natacha Rochel, William Bourguet, Petr Man, Pau Bernadó, Albane le Maire","doi":"10.1093/nar/gkaf967","DOIUrl":null,"url":null,"abstract":"<p><p>Retinoic acid receptors (RARs) are ligand-dependent transcription factors essential for various biological processes, including embryogenesis, differentiation, and apoptosis. RARs function as heterodimers with retinoid X receptors (RXRs) and regulate gene expression via retinoic acid response elements (RAREs). Their transcriptional activity is modulated by coregulators, with corepressors maintaining repression in the absence of ligand and coactivators enabling transcription upon ligand binding. Structural studies reveal that DNA binding induces conformational changes affecting coregulator interactions. However, the precise structural organization of RAR/RXR-coregulator complexes and the allosteric influence of DNA on receptor function remain incompletely understood. Our study presents an integrative analysis of the RAR/RXR heterodimer bound to four distinct and relevant RAREs (DR0, DR1, DR5, and IR0) in complex with either a corepressor (NCoR) or a coactivator (TIF-2) nuclear receptor interaction domain. By combining small-angle X-ray scattering, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we revealed that the heterodimer adopts distinct conformations depending on the DNA sequence, influencing interdomain distances and receptor interactions. Additionally, we uncovered the dynamic interplay between ligand, DNA, and coregulator binding. This study provides new insights into the structural features of coregulator proteins and highlights the allosteric influence of RAREs on receptor function.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 18","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12489474/pdf/","citationCount":"0","resultStr":"{\"title\":\"New structural insights into the control of the retinoic acid receptors RAR/RXR by DNA, ligands, and transcriptional coregulators.\",\"authors\":\"Izabella Tambones, Amin Sagar, Pavla Vankova, Dmitry Loginov, Coralie Carivenc, Natacha Rochel, William Bourguet, Petr Man, Pau Bernadó, Albane le Maire\",\"doi\":\"10.1093/nar/gkaf967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinoic acid receptors (RARs) are ligand-dependent transcription factors essential for various biological processes, including embryogenesis, differentiation, and apoptosis. RARs function as heterodimers with retinoid X receptors (RXRs) and regulate gene expression via retinoic acid response elements (RAREs). Their transcriptional activity is modulated by coregulators, with corepressors maintaining repression in the absence of ligand and coactivators enabling transcription upon ligand binding. Structural studies reveal that DNA binding induces conformational changes affecting coregulator interactions. However, the precise structural organization of RAR/RXR-coregulator complexes and the allosteric influence of DNA on receptor function remain incompletely understood. Our study presents an integrative analysis of the RAR/RXR heterodimer bound to four distinct and relevant RAREs (DR0, DR1, DR5, and IR0) in complex with either a corepressor (NCoR) or a coactivator (TIF-2) nuclear receptor interaction domain. By combining small-angle X-ray scattering, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we revealed that the heterodimer adopts distinct conformations depending on the DNA sequence, influencing interdomain distances and receptor interactions. Additionally, we uncovered the dynamic interplay between ligand, DNA, and coregulator binding. This study provides new insights into the structural features of coregulator proteins and highlights the allosteric influence of RAREs on receptor function.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 18\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12489474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf967\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf967","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
New structural insights into the control of the retinoic acid receptors RAR/RXR by DNA, ligands, and transcriptional coregulators.
Retinoic acid receptors (RARs) are ligand-dependent transcription factors essential for various biological processes, including embryogenesis, differentiation, and apoptosis. RARs function as heterodimers with retinoid X receptors (RXRs) and regulate gene expression via retinoic acid response elements (RAREs). Their transcriptional activity is modulated by coregulators, with corepressors maintaining repression in the absence of ligand and coactivators enabling transcription upon ligand binding. Structural studies reveal that DNA binding induces conformational changes affecting coregulator interactions. However, the precise structural organization of RAR/RXR-coregulator complexes and the allosteric influence of DNA on receptor function remain incompletely understood. Our study presents an integrative analysis of the RAR/RXR heterodimer bound to four distinct and relevant RAREs (DR0, DR1, DR5, and IR0) in complex with either a corepressor (NCoR) or a coactivator (TIF-2) nuclear receptor interaction domain. By combining small-angle X-ray scattering, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we revealed that the heterodimer adopts distinct conformations depending on the DNA sequence, influencing interdomain distances and receptor interactions. Additionally, we uncovered the dynamic interplay between ligand, DNA, and coregulator binding. This study provides new insights into the structural features of coregulator proteins and highlights the allosteric influence of RAREs on receptor function.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.