揭示MAG、PTEN和NOTCH1在轴突再生中的作用:siRNA/药物/纳米载体相互作用的网络分析和分子动力学研究。

IF 7.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Alireza Salimi, Aysan Moeinafshar, Sima Rezvantalab, Mohammad Dabiri, Nima Rezaei, Nima Beheshtizadeh
{"title":"揭示MAG、PTEN和NOTCH1在轴突再生中的作用:siRNA/药物/纳米载体相互作用的网络分析和分子动力学研究。","authors":"Alireza Salimi, Aysan Moeinafshar, Sima Rezvantalab, Mohammad Dabiri, Nima Rezaei, Nima Beheshtizadeh","doi":"10.1186/s12967-025-07042-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Axonal regeneration remains a critical yet challenging process in spinal cord injury (SCI) recovery, primarily due to the limited regenerative capacity of adult central nervous system (CNS) axons. Identifying key molecular targets and optimizing therapeutic delivery systems are promising strategies to enhance axonal regeneration.</p><p><strong>Methods: </strong>In this study, we investigated the roles of three critical proteins-MAG, PTEN, and NOTCH1-in axonal regeneration through an integrative approach combining network analysis and molecular dynamics (MD) simulations. We compiled 361 regeneration-associated genes from the REGene database and a targeted PubMed literature review. Gene ontology enrichment analysis via DAVID identified key genes linked to axonal regeneration and oligodendrocyte differentiation. A protein-protein interaction (PPI) network was constructed to pinpoint hub genes, with Cytoscape used to assess degree, betweenness, and closeness centrality. The top-ranking genes across at least two centrality metrics were selected, and GeneMANIA validated their functional relevance, confirming MAG, PTEN, and NOTCH1 as negative regulators of regeneration. Using siDirect and siRNA Wizard, we designed siRNA molecules targeting these genes, while DGIdb and literature mining identified small-molecule drugs (e.g., GT1b for MAG, enzalutamide for PTEN). MD simulations explored their interactions with polymeric nanocarriers-PLGA, PEI, chitosan, and PEI-PEG-revealing distinct binding patterns.</p><p><strong>Results: </strong>All proteins exhibited favorable binding with their respective drugs, with MAG-GT1b demonstrating the strongest affinity ( -146.07 ± 61.63 kJ/mol). Free energy landscape (FEL) analysis of the MAG/GT1b complex revealed a pronounced global energy minimum at 20.6 kJ/mol, reflecting high-affinity binding. Among nanocarriers, chitosan showed strong siRNA interactions, whereas PLGA and PEI exhibited superior drug-binding properties, particularly for GT1b, as evidenced by lower solvent-accessible surface area (SASA) values, indicating tighter encapsulation. Notably, PLGA-based systems displayed a broader radius of gyration (Rg) distribution, attributed to their amphiphilic nature, which promotes rapid self-assembly into multiple dispersed nanocarriers rather than consolidated structures. Additionally, PLGA chains exhibited reduced average SASA values (40-90 nm<sup>2</sup>) compared to other polymers.</p><p><strong>Conclusions: </strong>The strongest siRNA interactions occurred between PTEN siRNA-enzalutamide and PLGA ( -107.31 kJ/mol) or PEI ( -87.15 kJ/mol), primarily driven by van der Waals forces. While these in silico findings are promising, preclinical validation is essential for clinical translation. This study highlights the potential of combining network analysis and MD simulations to decipher complex interactions among proteins, siRNA, drugs, and polymers, offering novel insights into therapeutic strategies for SCI.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"1038"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487255/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the role of MAG, PTEN, and NOTCH1 in axonal regeneration: a network analysis and molecular dynamics study of siRNA/drugs/nanocarriers interactions.\",\"authors\":\"Alireza Salimi, Aysan Moeinafshar, Sima Rezvantalab, Mohammad Dabiri, Nima Rezaei, Nima Beheshtizadeh\",\"doi\":\"10.1186/s12967-025-07042-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Axonal regeneration remains a critical yet challenging process in spinal cord injury (SCI) recovery, primarily due to the limited regenerative capacity of adult central nervous system (CNS) axons. Identifying key molecular targets and optimizing therapeutic delivery systems are promising strategies to enhance axonal regeneration.</p><p><strong>Methods: </strong>In this study, we investigated the roles of three critical proteins-MAG, PTEN, and NOTCH1-in axonal regeneration through an integrative approach combining network analysis and molecular dynamics (MD) simulations. We compiled 361 regeneration-associated genes from the REGene database and a targeted PubMed literature review. Gene ontology enrichment analysis via DAVID identified key genes linked to axonal regeneration and oligodendrocyte differentiation. A protein-protein interaction (PPI) network was constructed to pinpoint hub genes, with Cytoscape used to assess degree, betweenness, and closeness centrality. The top-ranking genes across at least two centrality metrics were selected, and GeneMANIA validated their functional relevance, confirming MAG, PTEN, and NOTCH1 as negative regulators of regeneration. Using siDirect and siRNA Wizard, we designed siRNA molecules targeting these genes, while DGIdb and literature mining identified small-molecule drugs (e.g., GT1b for MAG, enzalutamide for PTEN). MD simulations explored their interactions with polymeric nanocarriers-PLGA, PEI, chitosan, and PEI-PEG-revealing distinct binding patterns.</p><p><strong>Results: </strong>All proteins exhibited favorable binding with their respective drugs, with MAG-GT1b demonstrating the strongest affinity ( -146.07 ± 61.63 kJ/mol). Free energy landscape (FEL) analysis of the MAG/GT1b complex revealed a pronounced global energy minimum at 20.6 kJ/mol, reflecting high-affinity binding. Among nanocarriers, chitosan showed strong siRNA interactions, whereas PLGA and PEI exhibited superior drug-binding properties, particularly for GT1b, as evidenced by lower solvent-accessible surface area (SASA) values, indicating tighter encapsulation. Notably, PLGA-based systems displayed a broader radius of gyration (Rg) distribution, attributed to their amphiphilic nature, which promotes rapid self-assembly into multiple dispersed nanocarriers rather than consolidated structures. Additionally, PLGA chains exhibited reduced average SASA values (40-90 nm<sup>2</sup>) compared to other polymers.</p><p><strong>Conclusions: </strong>The strongest siRNA interactions occurred between PTEN siRNA-enzalutamide and PLGA ( -107.31 kJ/mol) or PEI ( -87.15 kJ/mol), primarily driven by van der Waals forces. While these in silico findings are promising, preclinical validation is essential for clinical translation. This study highlights the potential of combining network analysis and MD simulations to decipher complex interactions among proteins, siRNA, drugs, and polymers, offering novel insights into therapeutic strategies for SCI.</p>\",\"PeriodicalId\":17458,\"journal\":{\"name\":\"Journal of Translational Medicine\",\"volume\":\"23 1\",\"pages\":\"1038\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487255/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12967-025-07042-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-07042-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:由于成人中枢神经系统轴突的再生能力有限,轴突再生在脊髓损伤(SCI)恢复中仍然是一个关键但具有挑战性的过程。确定关键分子靶点和优化治疗递送系统是增强轴突再生的有前途的策略。方法:本研究通过网络分析和分子动力学(MD)模拟相结合的方法,研究了三个关键蛋白——mag、PTEN和notch1在轴突再生中的作用。我们从REGene数据库和PubMed文献综述中编译了361个再生相关基因。通过DAVID进行基因本体富集分析,确定了与轴突再生和少突胶质细胞分化相关的关键基因。构建了一个蛋白质-蛋白质相互作用(PPI)网络来确定中心基因,使用Cytoscape来评估程度、中间性和接近中心性。我们选择了至少两个中心性指标中排名靠前的基因,GeneMANIA验证了它们的功能相关性,证实了MAG、PTEN和NOTCH1是再生的负调控因子。使用siDirect和siRNA Wizard,我们设计了针对这些基因的siRNA分子,而DGIdb和文献挖掘鉴定了小分子药物(例如,针对MAG的GT1b,针对PTEN的enzalutamide)。MD模拟研究了它们与聚合物纳米载体plga、PEI、壳聚糖和PEI- peg的相互作用,揭示了不同的结合模式。结果:所有蛋白与各自的药物均表现出良好的结合,其中MAG-GT1b的亲和力最强(-146.07±61.63 kJ/mol)。MAG/GT1b复合物的自由能图(FEL)分析显示,该复合物的整体能量最小值为20.6 kJ/mol,反映了其高亲和力结合。在纳米载体中,壳聚糖表现出较强的siRNA相互作用,而PLGA和PEI表现出较好的药物结合特性,特别是对GT1b,这可以通过较低的溶剂可及表面积(SASA)值来证明,这表明包裹性更强。值得注意的是,基于plga的系统显示出更宽的旋转半径(Rg)分布,这归因于它们的两亲性,这有助于快速自组装成多个分散的纳米载体,而不是固结结构。此外,与其他聚合物相比,PLGA链的平均SASA值(40-90 nm2)降低。结论:最强的siRNA相互作用发生在PTEN siRNA-enzalutamide与PLGA (-107.31 kJ/mol)或PEI (-87.15 kJ/mol)之间,主要由范德华力驱动。虽然这些计算机研究结果很有希望,但临床前验证对于临床转化至关重要。这项研究强调了将网络分析和MD模拟相结合来破译蛋白质、siRNA、药物和聚合物之间复杂相互作用的潜力,为脊髓损伤的治疗策略提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the role of MAG, PTEN, and NOTCH1 in axonal regeneration: a network analysis and molecular dynamics study of siRNA/drugs/nanocarriers interactions.

Background: Axonal regeneration remains a critical yet challenging process in spinal cord injury (SCI) recovery, primarily due to the limited regenerative capacity of adult central nervous system (CNS) axons. Identifying key molecular targets and optimizing therapeutic delivery systems are promising strategies to enhance axonal regeneration.

Methods: In this study, we investigated the roles of three critical proteins-MAG, PTEN, and NOTCH1-in axonal regeneration through an integrative approach combining network analysis and molecular dynamics (MD) simulations. We compiled 361 regeneration-associated genes from the REGene database and a targeted PubMed literature review. Gene ontology enrichment analysis via DAVID identified key genes linked to axonal regeneration and oligodendrocyte differentiation. A protein-protein interaction (PPI) network was constructed to pinpoint hub genes, with Cytoscape used to assess degree, betweenness, and closeness centrality. The top-ranking genes across at least two centrality metrics were selected, and GeneMANIA validated their functional relevance, confirming MAG, PTEN, and NOTCH1 as negative regulators of regeneration. Using siDirect and siRNA Wizard, we designed siRNA molecules targeting these genes, while DGIdb and literature mining identified small-molecule drugs (e.g., GT1b for MAG, enzalutamide for PTEN). MD simulations explored their interactions with polymeric nanocarriers-PLGA, PEI, chitosan, and PEI-PEG-revealing distinct binding patterns.

Results: All proteins exhibited favorable binding with their respective drugs, with MAG-GT1b demonstrating the strongest affinity ( -146.07 ± 61.63 kJ/mol). Free energy landscape (FEL) analysis of the MAG/GT1b complex revealed a pronounced global energy minimum at 20.6 kJ/mol, reflecting high-affinity binding. Among nanocarriers, chitosan showed strong siRNA interactions, whereas PLGA and PEI exhibited superior drug-binding properties, particularly for GT1b, as evidenced by lower solvent-accessible surface area (SASA) values, indicating tighter encapsulation. Notably, PLGA-based systems displayed a broader radius of gyration (Rg) distribution, attributed to their amphiphilic nature, which promotes rapid self-assembly into multiple dispersed nanocarriers rather than consolidated structures. Additionally, PLGA chains exhibited reduced average SASA values (40-90 nm2) compared to other polymers.

Conclusions: The strongest siRNA interactions occurred between PTEN siRNA-enzalutamide and PLGA ( -107.31 kJ/mol) or PEI ( -87.15 kJ/mol), primarily driven by van der Waals forces. While these in silico findings are promising, preclinical validation is essential for clinical translation. This study highlights the potential of combining network analysis and MD simulations to decipher complex interactions among proteins, siRNA, drugs, and polymers, offering novel insights into therapeutic strategies for SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信