介电泳辅助微流控装置,用于高精度和周期性单细胞捕获和释放。

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhihang Yu, Wenqiang Tong, Jiaming Shi, Bin Ran, JiaXi Du, Lingling Shui, Huaying Chen, Liuyong Shi, Jing Jin, Yonggang Zhu
{"title":"介电泳辅助微流控装置,用于高精度和周期性单细胞捕获和释放。","authors":"Zhihang Yu, Wenqiang Tong, Jiaming Shi, Bin Ran, JiaXi Du, Lingling Shui, Huaying Chen, Liuyong Shi, Jing Jin, Yonggang Zhu","doi":"10.1186/s12951-025-03637-y","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell analysis is crucial for understanding the specificity of individual cells, yet its advancement is limited by the technical challenges of precise single-cell manipulation. Microfluidics has made significant advancements in single-cell manipulation, making it a powerful tool for analysis. This study presents a dielectrophoresis-assisted microfluidic device for single-cell manipulation. By coupling flow and electric fields, this device enables single-cell focusing, along with fixed-frequency capture and release on a microfluidic chip. This study employs theoretical and finite element method analysis to determine the cell dielectric parameters (K562), medium dielectric parameters (σ<sub>m</sub> = 55 mS/m, ε<sub>m</sub> = 7.08 × 10<sup>-10</sup>), flow field parameters, and electric field parameters. Cell focusing and periodic cell capture and release were successfully achieved in FEM analysis. Theoretical parameters were further optimized experimentally, resulting in a single-cell capture efficiency exceeding 98%. By coordinating the flow and electric fields, the system successfully achieved controlled single-cell capture and release at a fixed frequency. This work provides a flexible approach for precise single-cell manipulation in microfluidic chips. This device has significant potential for applications in single-cell analysis, cell biology research, early disease diagnosis, personalized medicine, and droplet microfluidic single-cell encapsulation.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"626"},"PeriodicalIF":12.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487163/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dielectrophoresis-assisted microfluidic device for high-precision and periodic single-cell capture and release.\",\"authors\":\"Zhihang Yu, Wenqiang Tong, Jiaming Shi, Bin Ran, JiaXi Du, Lingling Shui, Huaying Chen, Liuyong Shi, Jing Jin, Yonggang Zhu\",\"doi\":\"10.1186/s12951-025-03637-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell analysis is crucial for understanding the specificity of individual cells, yet its advancement is limited by the technical challenges of precise single-cell manipulation. Microfluidics has made significant advancements in single-cell manipulation, making it a powerful tool for analysis. This study presents a dielectrophoresis-assisted microfluidic device for single-cell manipulation. By coupling flow and electric fields, this device enables single-cell focusing, along with fixed-frequency capture and release on a microfluidic chip. This study employs theoretical and finite element method analysis to determine the cell dielectric parameters (K562), medium dielectric parameters (σ<sub>m</sub> = 55 mS/m, ε<sub>m</sub> = 7.08 × 10<sup>-10</sup>), flow field parameters, and electric field parameters. Cell focusing and periodic cell capture and release were successfully achieved in FEM analysis. Theoretical parameters were further optimized experimentally, resulting in a single-cell capture efficiency exceeding 98%. By coordinating the flow and electric fields, the system successfully achieved controlled single-cell capture and release at a fixed frequency. This work provides a flexible approach for precise single-cell manipulation in microfluidic chips. This device has significant potential for applications in single-cell analysis, cell biology research, early disease diagnosis, personalized medicine, and droplet microfluidic single-cell encapsulation.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"626\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487163/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03637-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03637-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞分析对于理解单个细胞的特异性至关重要,但其进步受到精确单细胞操作的技术挑战的限制。微流体在单细胞操作方面取得了重大进展,使其成为分析的有力工具。本研究提出一种介电泳辅助的单细胞操作微流控装置。通过耦合流场和电场,该装置可以在微流控芯片上实现单细胞聚焦,以及固定频率的捕获和释放。本研究采用理论分析和有限元分析相结合的方法,确定了电池介质参数(K562)、介质介质参数(σm = 55 mS/m, εm = 7.08 × 10-10)、流场参数和电场参数。在有限元分析中成功地实现了细胞聚焦和周期性的细胞捕获和释放。实验进一步优化了理论参数,使单细胞捕获效率超过98%。通过协调流场和电场,该系统成功地实现了以固定频率控制单细胞捕获和释放。这项工作为微流控芯片的精确单细胞操作提供了一种灵活的方法。该装置在单细胞分析、细胞生物学研究、疾病早期诊断、个性化医疗、液滴微流控单细胞封装等方面具有重要的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dielectrophoresis-assisted microfluidic device for high-precision and periodic single-cell capture and release.

Single-cell analysis is crucial for understanding the specificity of individual cells, yet its advancement is limited by the technical challenges of precise single-cell manipulation. Microfluidics has made significant advancements in single-cell manipulation, making it a powerful tool for analysis. This study presents a dielectrophoresis-assisted microfluidic device for single-cell manipulation. By coupling flow and electric fields, this device enables single-cell focusing, along with fixed-frequency capture and release on a microfluidic chip. This study employs theoretical and finite element method analysis to determine the cell dielectric parameters (K562), medium dielectric parameters (σm = 55 mS/m, εm = 7.08 × 10-10), flow field parameters, and electric field parameters. Cell focusing and periodic cell capture and release were successfully achieved in FEM analysis. Theoretical parameters were further optimized experimentally, resulting in a single-cell capture efficiency exceeding 98%. By coordinating the flow and electric fields, the system successfully achieved controlled single-cell capture and release at a fixed frequency. This work provides a flexible approach for precise single-cell manipulation in microfluidic chips. This device has significant potential for applications in single-cell analysis, cell biology research, early disease diagnosis, personalized medicine, and droplet microfluidic single-cell encapsulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信