Maricci Basa, Neal Anthwal, Ryan N Felice, Abigail S Tucker
{"title":"蛇的大开口:蜥脚类动物下颌联合发育的比较。","authors":"Maricci Basa, Neal Anthwal, Ryan N Felice, Abigail S Tucker","doi":"10.1111/joa.70050","DOIUrl":null,"url":null,"abstract":"<p><p>The origin and evolution of snakes has been marked by the acquisition of many morphological and functional novelties, one of which is the possession of a highly kinetic skull allowing for the consumption of prey that are often larger than their head diameter. One feature of the iconic wide gape of macrostomate (large-mouthed) snakes is due to changes in the rostral midline where the left and right hemi-mandible come together. Across vertebrates, the two sides of the lower jaw are held together by the mandibular symphysis. In snakes, the two halves of the lower jaw do not fuse and the symphysis remains free, facilitating gape expansion. The symphysis has previously been explored in lizards and crocodiles, where ligamentous fibres and cartilages span the joint. Here, we compared the anatomy of the forming 'free' mandibular symphysis in the corn snake (Pantherophis guttatus) to symphysis development in two lizards, the veiled chameleon (Chamaeleo calyptratus) and the ocelot gecko (Paroedura picta), and an outgroup sauropsid, the chicken (Gallus gallus domesticus). Microcomputed tomography imaging, whole-mount skeletal staining and histology staining confirmed the absence of bone and cartilage fusion at the mandibular symphysis in the corn snake during development, in contrast to the complete fusion of cartilage, but not bone, in both lizards and the fusion of the bone in the chick. Trichrome staining under circular polarised light and whole fast green staining highlighted that, while the symphyseal region was populated by a dense network of collagen fibres, the snake hemi-mandibles were not connected across the rostral region by this fibrous network. Instead, collagen fibres extended backwards and around the snake mental groove to an intermandibular nodule. This nodule attached to the midline dorsally, allowing integration of the movement of the soft and hard tissues. Our analysis highlights the adaptations required to allow extreme lower jaw mobility and independence of the two sides of the jaw as found in macrostomate snakes.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The wide gape of snakes: A comparison of the developing mandibular symphysis in sauropsids.\",\"authors\":\"Maricci Basa, Neal Anthwal, Ryan N Felice, Abigail S Tucker\",\"doi\":\"10.1111/joa.70050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The origin and evolution of snakes has been marked by the acquisition of many morphological and functional novelties, one of which is the possession of a highly kinetic skull allowing for the consumption of prey that are often larger than their head diameter. One feature of the iconic wide gape of macrostomate (large-mouthed) snakes is due to changes in the rostral midline where the left and right hemi-mandible come together. Across vertebrates, the two sides of the lower jaw are held together by the mandibular symphysis. In snakes, the two halves of the lower jaw do not fuse and the symphysis remains free, facilitating gape expansion. The symphysis has previously been explored in lizards and crocodiles, where ligamentous fibres and cartilages span the joint. Here, we compared the anatomy of the forming 'free' mandibular symphysis in the corn snake (Pantherophis guttatus) to symphysis development in two lizards, the veiled chameleon (Chamaeleo calyptratus) and the ocelot gecko (Paroedura picta), and an outgroup sauropsid, the chicken (Gallus gallus domesticus). Microcomputed tomography imaging, whole-mount skeletal staining and histology staining confirmed the absence of bone and cartilage fusion at the mandibular symphysis in the corn snake during development, in contrast to the complete fusion of cartilage, but not bone, in both lizards and the fusion of the bone in the chick. Trichrome staining under circular polarised light and whole fast green staining highlighted that, while the symphyseal region was populated by a dense network of collagen fibres, the snake hemi-mandibles were not connected across the rostral region by this fibrous network. Instead, collagen fibres extended backwards and around the snake mental groove to an intermandibular nodule. This nodule attached to the midline dorsally, allowing integration of the movement of the soft and hard tissues. Our analysis highlights the adaptations required to allow extreme lower jaw mobility and independence of the two sides of the jaw as found in macrostomate snakes.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.70050\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.70050","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
The wide gape of snakes: A comparison of the developing mandibular symphysis in sauropsids.
The origin and evolution of snakes has been marked by the acquisition of many morphological and functional novelties, one of which is the possession of a highly kinetic skull allowing for the consumption of prey that are often larger than their head diameter. One feature of the iconic wide gape of macrostomate (large-mouthed) snakes is due to changes in the rostral midline where the left and right hemi-mandible come together. Across vertebrates, the two sides of the lower jaw are held together by the mandibular symphysis. In snakes, the two halves of the lower jaw do not fuse and the symphysis remains free, facilitating gape expansion. The symphysis has previously been explored in lizards and crocodiles, where ligamentous fibres and cartilages span the joint. Here, we compared the anatomy of the forming 'free' mandibular symphysis in the corn snake (Pantherophis guttatus) to symphysis development in two lizards, the veiled chameleon (Chamaeleo calyptratus) and the ocelot gecko (Paroedura picta), and an outgroup sauropsid, the chicken (Gallus gallus domesticus). Microcomputed tomography imaging, whole-mount skeletal staining and histology staining confirmed the absence of bone and cartilage fusion at the mandibular symphysis in the corn snake during development, in contrast to the complete fusion of cartilage, but not bone, in both lizards and the fusion of the bone in the chick. Trichrome staining under circular polarised light and whole fast green staining highlighted that, while the symphyseal region was populated by a dense network of collagen fibres, the snake hemi-mandibles were not connected across the rostral region by this fibrous network. Instead, collagen fibres extended backwards and around the snake mental groove to an intermandibular nodule. This nodule attached to the midline dorsally, allowing integration of the movement of the soft and hard tissues. Our analysis highlights the adaptations required to allow extreme lower jaw mobility and independence of the two sides of the jaw as found in macrostomate snakes.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.