显微酸诱导降解和元素释放从热成型和3d打印正畸对准器在模拟胃环境。

IF 3.4 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Piero Antonio Zecca, Eleonora Ivonne Scurati, Francesca Zara, Mario Raspanti, Niccolò Baranzini, Gilberto Binda, Marco Serafin, Alberto Caprioglio, Marina Borgese
{"title":"显微酸诱导降解和元素释放从热成型和3d打印正畸对准器在模拟胃环境。","authors":"Piero Antonio Zecca,&nbsp;Eleonora Ivonne Scurati,&nbsp;Francesca Zara,&nbsp;Mario Raspanti,&nbsp;Niccolò Baranzini,&nbsp;Gilberto Binda,&nbsp;Marco Serafin,&nbsp;Alberto Caprioglio,&nbsp;Marina Borgese","doi":"10.1002/jbm.b.35674","DOIUrl":null,"url":null,"abstract":"<p>Clear aligners have revolutionized orthodontic treatment, yet concerns are rising about microplastics (MPs) and nanoplastics (NPs) released from these devices through mechanical wear and chemical degradation. Once ingested, these particles may undergo structural and chemical transformations in the gastrointestinal tract, particularly under acidic gastric conditions. Despite growing environmental and toxicological awareness, the degradation patterns of aligner materials remain largely unexplored. This study evaluated the acid-induced degradation and elemental release of thermoformed (TFA) and direct-printed (DPA) aligners in a simulated gastric environment. TFA (Invisalign SmartTrack) and DPA (Graphy TC-85DAC) samples were exposed to hydrochloric acid (pH 2). Surface acid-induced degradation was monitored using atomic force microscopy (AFM) over 60 min, while elemental release was quantified using inductively coupled plasma mass spectrometry (ICP-MS) following acid digestion on 0.5 M HCl leachates after 7 days. TFA rapidly disintegrated into an amorphous gel, preventing AFM imaging at pH 2. DPA maintained integrity and showed progressive roughening: RMS roughness rose from 10.06 to 10.97 nm (+ 9%; <i>p</i> &lt; 0.001), mean roughness from 7.85 to 8.49 nm (+ 8%; <i>p</i> = 0.002), and maximum height from 68.31 to 76.51 nm (+ 12%; <i>p</i> = 0.038). ICP-MS of digested matrices revealed distinct elemental fingerprints: TFA was dominated by Sn (33.42 mg/kg), K (21.35 mg/kg), and Na (13.34 mg/kg); DPA by Ca (36.63 mg/kg), Na (11.87 mg/kg), and Fe (3.2 mg/kg). In 7-day 0.5 M HCl leachates, TFA released Sb 0.13 and Sn 0.09 mg/kg, whereas DPA showed Sb 0.03 and Sn 0.11 mg/kg; DPA leachates were richer in Ca (7.57 mg/kg) and Fe (1.57 mg/kg). DPA exhibited quantifiably slower acid erosion than TFA and distinct elemental release profiles at longer extraction, supporting greater acid-phase stability of DPA and providing elemental markers to trace aligner-derived particles. The results pertain to Invisalign SmartTrack and Graphy TC-85DAC and should not be generalized to all thermoformed or 3D-printed aligners. These findings emphasize the need for biostable, environmentally safer materials in orthodontics, especially considering the ingestion and systemic distribution of MPs.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35674","citationCount":"0","resultStr":"{\"title\":\"Microscopic Acid-Induced Degradation and Elemental Release From Thermoformed and 3D-Printed Orthodontic Aligners in a Simulated Gastric Environment\",\"authors\":\"Piero Antonio Zecca,&nbsp;Eleonora Ivonne Scurati,&nbsp;Francesca Zara,&nbsp;Mario Raspanti,&nbsp;Niccolò Baranzini,&nbsp;Gilberto Binda,&nbsp;Marco Serafin,&nbsp;Alberto Caprioglio,&nbsp;Marina Borgese\",\"doi\":\"10.1002/jbm.b.35674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clear aligners have revolutionized orthodontic treatment, yet concerns are rising about microplastics (MPs) and nanoplastics (NPs) released from these devices through mechanical wear and chemical degradation. Once ingested, these particles may undergo structural and chemical transformations in the gastrointestinal tract, particularly under acidic gastric conditions. Despite growing environmental and toxicological awareness, the degradation patterns of aligner materials remain largely unexplored. This study evaluated the acid-induced degradation and elemental release of thermoformed (TFA) and direct-printed (DPA) aligners in a simulated gastric environment. TFA (Invisalign SmartTrack) and DPA (Graphy TC-85DAC) samples were exposed to hydrochloric acid (pH 2). Surface acid-induced degradation was monitored using atomic force microscopy (AFM) over 60 min, while elemental release was quantified using inductively coupled plasma mass spectrometry (ICP-MS) following acid digestion on 0.5 M HCl leachates after 7 days. TFA rapidly disintegrated into an amorphous gel, preventing AFM imaging at pH 2. DPA maintained integrity and showed progressive roughening: RMS roughness rose from 10.06 to 10.97 nm (+ 9%; <i>p</i> &lt; 0.001), mean roughness from 7.85 to 8.49 nm (+ 8%; <i>p</i> = 0.002), and maximum height from 68.31 to 76.51 nm (+ 12%; <i>p</i> = 0.038). ICP-MS of digested matrices revealed distinct elemental fingerprints: TFA was dominated by Sn (33.42 mg/kg), K (21.35 mg/kg), and Na (13.34 mg/kg); DPA by Ca (36.63 mg/kg), Na (11.87 mg/kg), and Fe (3.2 mg/kg). In 7-day 0.5 M HCl leachates, TFA released Sb 0.13 and Sn 0.09 mg/kg, whereas DPA showed Sb 0.03 and Sn 0.11 mg/kg; DPA leachates were richer in Ca (7.57 mg/kg) and Fe (1.57 mg/kg). DPA exhibited quantifiably slower acid erosion than TFA and distinct elemental release profiles at longer extraction, supporting greater acid-phase stability of DPA and providing elemental markers to trace aligner-derived particles. The results pertain to Invisalign SmartTrack and Graphy TC-85DAC and should not be generalized to all thermoformed or 3D-printed aligners. These findings emphasize the need for biostable, environmentally safer materials in orthodontics, especially considering the ingestion and systemic distribution of MPs.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35674\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35674\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35674","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

清洁矫正器已经彻底改变了正畸治疗,但人们越来越关注这些设备通过机械磨损和化学降解释放的微塑料(MPs)和纳米塑料(NPs)。一旦被摄入,这些颗粒可能在胃肠道中发生结构和化学变化,特别是在酸性胃条件下。尽管人们对环境和毒理学的认识不断提高,但对准剂材料的降解模式在很大程度上仍未得到探索。本研究评估了酸诱导的热成型(TFA)和直接打印(DPA)对准器在模拟胃环境中的降解和元素释放。TFA (Invisalign SmartTrack)和DPA (Graphy TC-85DAC)样品暴露于盐酸(pH 2)中。使用原子力显微镜(AFM)监测60分钟内表面酸诱导的降解,并在7天后使用电感耦合等离子体质谱(ICP-MS)对0.5 M HCl渗滤液进行酸消化后的元素释放进行量化。TFA迅速分解成无定形凝胶,在pH值为2时阻止AFM成像。DPA保持完整性,呈现渐进式粗化:RMS粗糙度从10.06 nm上升到10.97 nm (+ 9%)
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microscopic Acid-Induced Degradation and Elemental Release From Thermoformed and 3D-Printed Orthodontic Aligners in a Simulated Gastric Environment

Microscopic Acid-Induced Degradation and Elemental Release From Thermoformed and 3D-Printed Orthodontic Aligners in a Simulated Gastric Environment

Clear aligners have revolutionized orthodontic treatment, yet concerns are rising about microplastics (MPs) and nanoplastics (NPs) released from these devices through mechanical wear and chemical degradation. Once ingested, these particles may undergo structural and chemical transformations in the gastrointestinal tract, particularly under acidic gastric conditions. Despite growing environmental and toxicological awareness, the degradation patterns of aligner materials remain largely unexplored. This study evaluated the acid-induced degradation and elemental release of thermoformed (TFA) and direct-printed (DPA) aligners in a simulated gastric environment. TFA (Invisalign SmartTrack) and DPA (Graphy TC-85DAC) samples were exposed to hydrochloric acid (pH 2). Surface acid-induced degradation was monitored using atomic force microscopy (AFM) over 60 min, while elemental release was quantified using inductively coupled plasma mass spectrometry (ICP-MS) following acid digestion on 0.5 M HCl leachates after 7 days. TFA rapidly disintegrated into an amorphous gel, preventing AFM imaging at pH 2. DPA maintained integrity and showed progressive roughening: RMS roughness rose from 10.06 to 10.97 nm (+ 9%; p < 0.001), mean roughness from 7.85 to 8.49 nm (+ 8%; p = 0.002), and maximum height from 68.31 to 76.51 nm (+ 12%; p = 0.038). ICP-MS of digested matrices revealed distinct elemental fingerprints: TFA was dominated by Sn (33.42 mg/kg), K (21.35 mg/kg), and Na (13.34 mg/kg); DPA by Ca (36.63 mg/kg), Na (11.87 mg/kg), and Fe (3.2 mg/kg). In 7-day 0.5 M HCl leachates, TFA released Sb 0.13 and Sn 0.09 mg/kg, whereas DPA showed Sb 0.03 and Sn 0.11 mg/kg; DPA leachates were richer in Ca (7.57 mg/kg) and Fe (1.57 mg/kg). DPA exhibited quantifiably slower acid erosion than TFA and distinct elemental release profiles at longer extraction, supporting greater acid-phase stability of DPA and providing elemental markers to trace aligner-derived particles. The results pertain to Invisalign SmartTrack and Graphy TC-85DAC and should not be generalized to all thermoformed or 3D-printed aligners. These findings emphasize the need for biostable, environmentally safer materials in orthodontics, especially considering the ingestion and systemic distribution of MPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信