使用最先进的方法靶向小分子RNA提供了高度可预测的核糖体开关抑制剂的亲和力。

IF 5.1 1区 生物学 Q1 BIOLOGY
Narjes Ansari, Chengwen Liu, Florent Hédin, Jérôme Hénin, Jay W Ponder, Pengyu Ren, Jean-Philip Piquemal, Louis Lagardère, Krystel El Hage
{"title":"使用最先进的方法靶向小分子RNA提供了高度可预测的核糖体开关抑制剂的亲和力。","authors":"Narjes Ansari, Chengwen Liu, Florent Hédin, Jérôme Hénin, Jay W Ponder, Pengyu Ren, Jean-Philip Piquemal, Louis Lagardère, Krystel El Hage","doi":"10.1038/s42003-025-08809-y","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting RNA with small molecules represents a promising yet relatively unexplored avenue for the design of new drugs. Nevertheless, challenges arise from the lack of computational models and techniques able to accurately model RNA systems, and predict their binding affinities to small molecules. Here, we tackle these difficulties by developing a tailored state-of-the-art approach for absolute binding free energy calculations of RNA-binding small molecules. For this, we combine the advanced AMOEBA polarizable force field to the newly developed lambda-Adaptive Biasing Force scheme associated to refined restraints allowing for efficient sampling. To capture the free energy barrier associated to challenging RNA conformational changes, we combine machine learning-based collective variables with enhanced sampling simulations. Applying this computational protocol to a complex Riboswitch-like RNA target demonstrates quantitative predictions. These results pave the way for the routine application of free energy simulations in RNA-targeted drug discovery, thus providing a significant reduction in their failure rate.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1405"},"PeriodicalIF":5.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488954/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting RNA with small molecules using state-of-the-art methods provides highly predictive affinities of riboswitch inhibitors.\",\"authors\":\"Narjes Ansari, Chengwen Liu, Florent Hédin, Jérôme Hénin, Jay W Ponder, Pengyu Ren, Jean-Philip Piquemal, Louis Lagardère, Krystel El Hage\",\"doi\":\"10.1038/s42003-025-08809-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeting RNA with small molecules represents a promising yet relatively unexplored avenue for the design of new drugs. Nevertheless, challenges arise from the lack of computational models and techniques able to accurately model RNA systems, and predict their binding affinities to small molecules. Here, we tackle these difficulties by developing a tailored state-of-the-art approach for absolute binding free energy calculations of RNA-binding small molecules. For this, we combine the advanced AMOEBA polarizable force field to the newly developed lambda-Adaptive Biasing Force scheme associated to refined restraints allowing for efficient sampling. To capture the free energy barrier associated to challenging RNA conformational changes, we combine machine learning-based collective variables with enhanced sampling simulations. Applying this computational protocol to a complex Riboswitch-like RNA target demonstrates quantitative predictions. These results pave the way for the routine application of free energy simulations in RNA-targeted drug discovery, thus providing a significant reduction in their failure rate.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"1405\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-08809-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08809-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

用小分子靶向RNA代表了一种有希望但相对尚未开发的新药设计途径。然而,由于缺乏能够准确模拟RNA系统并预测其与小分子的结合亲和力的计算模型和技术,因此面临挑战。在这里,我们通过开发一种定制的最先进的方法来计算rna结合小分子的绝对结合自由能来解决这些困难。为此,我们将先进的变形虫极化力场与新开发的lambda-自适应偏压力方案相结合,该方案与精细约束相结合,从而实现高效采样。为了捕获与具有挑战性的RNA构象变化相关的自由能垒,我们将基于机器学习的集体变量与增强的采样模拟相结合。将此计算协议应用于复杂的核糖开关样RNA靶标演示了定量预测。这些结果为自由能模拟在rna靶向药物发现中的常规应用铺平了道路,从而显著降低了它们的失败率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting RNA with small molecules using state-of-the-art methods provides highly predictive affinities of riboswitch inhibitors.

Targeting RNA with small molecules represents a promising yet relatively unexplored avenue for the design of new drugs. Nevertheless, challenges arise from the lack of computational models and techniques able to accurately model RNA systems, and predict their binding affinities to small molecules. Here, we tackle these difficulties by developing a tailored state-of-the-art approach for absolute binding free energy calculations of RNA-binding small molecules. For this, we combine the advanced AMOEBA polarizable force field to the newly developed lambda-Adaptive Biasing Force scheme associated to refined restraints allowing for efficient sampling. To capture the free energy barrier associated to challenging RNA conformational changes, we combine machine learning-based collective variables with enhanced sampling simulations. Applying this computational protocol to a complex Riboswitch-like RNA target demonstrates quantitative predictions. These results pave the way for the routine application of free energy simulations in RNA-targeted drug discovery, thus providing a significant reduction in their failure rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信