Andreas Carlsson, Victoria Maier, Celia Fricke, Tinna Pálmadóttir, Ingemar André, Ulf Olsson, Sara Linse
{"title":"溶液条件对伴侣蛋白DNAJB6b自组装的影响。","authors":"Andreas Carlsson, Victoria Maier, Celia Fricke, Tinna Pálmadóttir, Ingemar André, Ulf Olsson, Sara Linse","doi":"10.1038/s42004-025-01697-7","DOIUrl":null,"url":null,"abstract":"<p><p>Chaperone proteins are essential for maintaining proteostasis. Their main role is to assist with the folding of other proteins and to prevent the aggregation of misfolded proteins. The molecular chaperone DNAJB6b efficiently suppresses amyloid formation of several peptides. This activity may rely on the same physicochemical properties as those driving chaperone self-assembly into large micellar-like oligomers. We have therefore undertaken a systematic study of DNAJB6b's self-assembly under different solution conditions. Using complementary biophysical techniques, we probe variations in aggregation number distribution and hydrodynamic radius, upon variation of pH, temperature, ionic strength, or anions across the Hofmeister series. We find that DNAJB6b maintains its propensity to self-assemble under all solution conditions examined. The size and compactness of the micelles change upon unfolding of the C-terminal domain, although a folded C-terminal domain does not drive micelle formation, which can likely be ascribed to hydrophobic interactions in the linker region. Mass photometry reveals that monomers of DNAJB6b coexist at equilibrium with the micelles. Furthermore, the free energy barrier for micelle dissociation into monomers was estimated by measuring dissociation rate constants at different temperatures.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"289"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of solution conditions on the self-assembly of the chaperone protein DNAJB6b.\",\"authors\":\"Andreas Carlsson, Victoria Maier, Celia Fricke, Tinna Pálmadóttir, Ingemar André, Ulf Olsson, Sara Linse\",\"doi\":\"10.1038/s42004-025-01697-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chaperone proteins are essential for maintaining proteostasis. Their main role is to assist with the folding of other proteins and to prevent the aggregation of misfolded proteins. The molecular chaperone DNAJB6b efficiently suppresses amyloid formation of several peptides. This activity may rely on the same physicochemical properties as those driving chaperone self-assembly into large micellar-like oligomers. We have therefore undertaken a systematic study of DNAJB6b's self-assembly under different solution conditions. Using complementary biophysical techniques, we probe variations in aggregation number distribution and hydrodynamic radius, upon variation of pH, temperature, ionic strength, or anions across the Hofmeister series. We find that DNAJB6b maintains its propensity to self-assemble under all solution conditions examined. The size and compactness of the micelles change upon unfolding of the C-terminal domain, although a folded C-terminal domain does not drive micelle formation, which can likely be ascribed to hydrophobic interactions in the linker region. Mass photometry reveals that monomers of DNAJB6b coexist at equilibrium with the micelles. Furthermore, the free energy barrier for micelle dissociation into monomers was estimated by measuring dissociation rate constants at different temperatures.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"289\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-025-01697-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01697-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of solution conditions on the self-assembly of the chaperone protein DNAJB6b.
Chaperone proteins are essential for maintaining proteostasis. Their main role is to assist with the folding of other proteins and to prevent the aggregation of misfolded proteins. The molecular chaperone DNAJB6b efficiently suppresses amyloid formation of several peptides. This activity may rely on the same physicochemical properties as those driving chaperone self-assembly into large micellar-like oligomers. We have therefore undertaken a systematic study of DNAJB6b's self-assembly under different solution conditions. Using complementary biophysical techniques, we probe variations in aggregation number distribution and hydrodynamic radius, upon variation of pH, temperature, ionic strength, or anions across the Hofmeister series. We find that DNAJB6b maintains its propensity to self-assemble under all solution conditions examined. The size and compactness of the micelles change upon unfolding of the C-terminal domain, although a folded C-terminal domain does not drive micelle formation, which can likely be ascribed to hydrophobic interactions in the linker region. Mass photometry reveals that monomers of DNAJB6b coexist at equilibrium with the micelles. Furthermore, the free energy barrier for micelle dissociation into monomers was estimated by measuring dissociation rate constants at different temperatures.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.