{"title":"水生动物类胡萝卜素的化学多样性及其治疗、生物医学和天然着色剂的应用。","authors":"Aminur Rahman, Pranab Borah, Saddam Hussain, Arlin Sen, Raju Bharalee, Mayuri Chabukdhara, Hrishikesh Upadhyaya, Akalesh Kumar Verma","doi":"10.2174/0113862073377688250903053348","DOIUrl":null,"url":null,"abstract":"<p><p>Carotenoids, prevalent in a diverse range of aquatic animals, perform critical and multifaceted roles essential for marine and freshwater ecosystems. This review examines the distribution, biological functions, and potential biomedical applications of carotenoids sourced from various aquatic animals. Carotenoids are acquired through food consumption or metabolic pathways, playing vital roles such as photoprotection, antioxidant defense, and nutritional enhancement, particularly provitamin A. Marine sponges and cnidarians display a diverse spectrum of carotenoids, crucial for symbiosis and photoprotection. Molluscs and crustaceans exhibit varied carotenoid profiles corresponding to their trophic strategies, whereas fish and echinoderms utilize carotenoids in reproductive and developmental processes. In biomedical contexts, carotenoids act as potential anti-cancer agents and antioxidants. Lycopene, β-carotene, and astaxanthin demonstrate anti-proliferative and antioxidant effects, pivotal in cancer prevention and therapeutic interventions. Their applications extend to biomedical technologies like Raman spectroscopy and drug delivery systems, underscoring their diagnostic and therapeutic potential. Carotenoids, as powerful antioxidants, neutralize free radicals and diminish oxidative stress, which is linked to chronic diseases like cardiovascular diseases, neurodegenerative disorders, and cancer. Some carotenoids, such as beta-carotene, are precursors to vitamin A, vital for vision, immune response, and cell communication. Furthermore, carotenoids have anti-inflammatory properties that modulate inflammatory pathways and provide therapeutic potential in diseases like inflammatory bowel disease and arthritis, which are marked by chronic inflammation. Furthermore, carotenoids provide photoprotection, safeguarding the skin and other tissues from damage caused by ultraviolet radiation. This paper highlights the integral role of carotenoids in biomedical advancements, emphasizing their significance in human health research.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Diversity of Carotenoids Derived from Aquatic Animals and their Therapeutic, Biomedical, and Natural Colorant Applications.\",\"authors\":\"Aminur Rahman, Pranab Borah, Saddam Hussain, Arlin Sen, Raju Bharalee, Mayuri Chabukdhara, Hrishikesh Upadhyaya, Akalesh Kumar Verma\",\"doi\":\"10.2174/0113862073377688250903053348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carotenoids, prevalent in a diverse range of aquatic animals, perform critical and multifaceted roles essential for marine and freshwater ecosystems. This review examines the distribution, biological functions, and potential biomedical applications of carotenoids sourced from various aquatic animals. Carotenoids are acquired through food consumption or metabolic pathways, playing vital roles such as photoprotection, antioxidant defense, and nutritional enhancement, particularly provitamin A. Marine sponges and cnidarians display a diverse spectrum of carotenoids, crucial for symbiosis and photoprotection. Molluscs and crustaceans exhibit varied carotenoid profiles corresponding to their trophic strategies, whereas fish and echinoderms utilize carotenoids in reproductive and developmental processes. In biomedical contexts, carotenoids act as potential anti-cancer agents and antioxidants. Lycopene, β-carotene, and astaxanthin demonstrate anti-proliferative and antioxidant effects, pivotal in cancer prevention and therapeutic interventions. Their applications extend to biomedical technologies like Raman spectroscopy and drug delivery systems, underscoring their diagnostic and therapeutic potential. Carotenoids, as powerful antioxidants, neutralize free radicals and diminish oxidative stress, which is linked to chronic diseases like cardiovascular diseases, neurodegenerative disorders, and cancer. Some carotenoids, such as beta-carotene, are precursors to vitamin A, vital for vision, immune response, and cell communication. Furthermore, carotenoids have anti-inflammatory properties that modulate inflammatory pathways and provide therapeutic potential in diseases like inflammatory bowel disease and arthritis, which are marked by chronic inflammation. Furthermore, carotenoids provide photoprotection, safeguarding the skin and other tissues from damage caused by ultraviolet radiation. This paper highlights the integral role of carotenoids in biomedical advancements, emphasizing their significance in human health research.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073377688250903053348\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073377688250903053348","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Chemical Diversity of Carotenoids Derived from Aquatic Animals and their Therapeutic, Biomedical, and Natural Colorant Applications.
Carotenoids, prevalent in a diverse range of aquatic animals, perform critical and multifaceted roles essential for marine and freshwater ecosystems. This review examines the distribution, biological functions, and potential biomedical applications of carotenoids sourced from various aquatic animals. Carotenoids are acquired through food consumption or metabolic pathways, playing vital roles such as photoprotection, antioxidant defense, and nutritional enhancement, particularly provitamin A. Marine sponges and cnidarians display a diverse spectrum of carotenoids, crucial for symbiosis and photoprotection. Molluscs and crustaceans exhibit varied carotenoid profiles corresponding to their trophic strategies, whereas fish and echinoderms utilize carotenoids in reproductive and developmental processes. In biomedical contexts, carotenoids act as potential anti-cancer agents and antioxidants. Lycopene, β-carotene, and astaxanthin demonstrate anti-proliferative and antioxidant effects, pivotal in cancer prevention and therapeutic interventions. Their applications extend to biomedical technologies like Raman spectroscopy and drug delivery systems, underscoring their diagnostic and therapeutic potential. Carotenoids, as powerful antioxidants, neutralize free radicals and diminish oxidative stress, which is linked to chronic diseases like cardiovascular diseases, neurodegenerative disorders, and cancer. Some carotenoids, such as beta-carotene, are precursors to vitamin A, vital for vision, immune response, and cell communication. Furthermore, carotenoids have anti-inflammatory properties that modulate inflammatory pathways and provide therapeutic potential in diseases like inflammatory bowel disease and arthritis, which are marked by chronic inflammation. Furthermore, carotenoids provide photoprotection, safeguarding the skin and other tissues from damage caused by ultraviolet radiation. This paper highlights the integral role of carotenoids in biomedical advancements, emphasizing their significance in human health research.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.