Pedro F Bartolomeu, Isadora S Fortes, Aline R Zimmer, Marcela S Lopes, Saulo F de Andrade
{"title":"8-羟基喹啉衍生物作为治疗阿尔茨海默病的候选药物。","authors":"Pedro F Bartolomeu, Isadora S Fortes, Aline R Zimmer, Marcela S Lopes, Saulo F de Andrade","doi":"10.2174/0109298673409645250823055140","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most prevalent form of dementia among older adults worldwide. Amidst several hypotheses to explain the pathobiology of the disease are biochemical indicators such as β-amyloid (Aβ) plaques; neurofibrillary tangles, caused by hyperphosphorylated tau protein; oxidative stress; metal dyshomeostasis; low levels of acetylcholine, and neuroinflammation. Considering the multifactorial nature of AD, there has been an increase in research for novel multitarget compounds, mainly utilizing molecular hybridization for drug design. In this review, we focus on the 8-hydroxyquinoline moiety, a privileged metal-binding agent with Aβ antiaggregating properties, and its derivatives, aiming to have an effect on multiple molecular targets. Furthermore, the most prominent structure-activity relationships found on the analyzed compounds, along with the most promising strategies explored by researchers, are discussed. That way, we hope to provide a comprehensive perspective on the development of anti- Alzheimer agents based on the 8-hydroxyquinoline moiety in the last decade.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"8-Hydroxyquinoline Derivatives as Drug Candidates for the Treatment of Alzheimer's Disease.\",\"authors\":\"Pedro F Bartolomeu, Isadora S Fortes, Aline R Zimmer, Marcela S Lopes, Saulo F de Andrade\",\"doi\":\"10.2174/0109298673409645250823055140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is the most prevalent form of dementia among older adults worldwide. Amidst several hypotheses to explain the pathobiology of the disease are biochemical indicators such as β-amyloid (Aβ) plaques; neurofibrillary tangles, caused by hyperphosphorylated tau protein; oxidative stress; metal dyshomeostasis; low levels of acetylcholine, and neuroinflammation. Considering the multifactorial nature of AD, there has been an increase in research for novel multitarget compounds, mainly utilizing molecular hybridization for drug design. In this review, we focus on the 8-hydroxyquinoline moiety, a privileged metal-binding agent with Aβ antiaggregating properties, and its derivatives, aiming to have an effect on multiple molecular targets. Furthermore, the most prominent structure-activity relationships found on the analyzed compounds, along with the most promising strategies explored by researchers, are discussed. That way, we hope to provide a comprehensive perspective on the development of anti- Alzheimer agents based on the 8-hydroxyquinoline moiety in the last decade.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673409645250823055140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673409645250823055140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
8-Hydroxyquinoline Derivatives as Drug Candidates for the Treatment of Alzheimer's Disease.
Alzheimer's disease (AD) is the most prevalent form of dementia among older adults worldwide. Amidst several hypotheses to explain the pathobiology of the disease are biochemical indicators such as β-amyloid (Aβ) plaques; neurofibrillary tangles, caused by hyperphosphorylated tau protein; oxidative stress; metal dyshomeostasis; low levels of acetylcholine, and neuroinflammation. Considering the multifactorial nature of AD, there has been an increase in research for novel multitarget compounds, mainly utilizing molecular hybridization for drug design. In this review, we focus on the 8-hydroxyquinoline moiety, a privileged metal-binding agent with Aβ antiaggregating properties, and its derivatives, aiming to have an effect on multiple molecular targets. Furthermore, the most prominent structure-activity relationships found on the analyzed compounds, along with the most promising strategies explored by researchers, are discussed. That way, we hope to provide a comprehensive perspective on the development of anti- Alzheimer agents based on the 8-hydroxyquinoline moiety in the last decade.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.