S-Scheme WO3-x/MoS2异质结光催化偶联微纳气泡技术增强水中抗菌消毒

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Qiang Mao, Kai Wei, Tianyu Li, Jiasheng Zhu, Huarui Han, Kan Hu, Changchang Ma, Sheng Feng
{"title":"S-Scheme WO3-x/MoS2异质结光催化偶联微纳气泡技术增强水中抗菌消毒","authors":"Qiang Mao, Kai Wei, Tianyu Li, Jiasheng Zhu, Huarui Han, Kan Hu, Changchang Ma, Sheng Feng","doi":"10.1016/j.envres.2025.122966","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed an S-scheme WO<sub>3-x</sub>/MoS<sub>2</sub> heterojunction photocatalytic system coupled with micro-nano bubbles (MNBs) for solar-powered water disinfection. The photogenerated carriers transfer in WO<sub>3-x</sub>/MoS<sub>2</sub> followed an S-scheme route, accumulating photogenerated electrons at the conduction band (CB) of MoS<sub>2</sub> and holes at the valence band (VB) for robust oxygen and H<sub>2</sub>O activation. More importantly, the disinfection performance of WO<sub>3-x</sub>/MoS<sub>2</sub> was strongly dependent on the oxygen vacancy (OV) concentration in precursor WO<sub>3-x</sub>. Consequently, WO<sub>3-x</sub>/MoS<sub>2</sub> achieved 94.23 % inactivation of Escherichia coli (E. coli) and 93.09 % of Staphylococcus aureus (S. aureus) within 20 min under simulated solar irradiation. As expected, the introduction of MNBs significantly enhanced the disinfection efficiency by improving physical mass transfer, providing a sustained oxygen supply, and creating localized oxygen-enriched zones on the catalyst surface through electrostatic attraction. These combined effects broke the limitation of dissolved oxygen (DO) concentration, greatly amplifying reactive oxygen species (ROS) generation. Consequently, the system achieved 98.46 % inactivation of E. coli and 98.90 % of S. aureus within just 10 min. Mechanistic studies confirmed the synergistic action of photothermal conversion and ROS in antibacterial disinfection. This study provides valuable insights into the design of green and highly efficient antibacterial systems.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"122966"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S-scheme WO<sub>3-x</sub>/MoS<sub>2</sub> heterojunction photocatalysis coupling with micro-nano bubbles technology for enhanced antibacterial disinfection in water.\",\"authors\":\"Qiang Mao, Kai Wei, Tianyu Li, Jiasheng Zhu, Huarui Han, Kan Hu, Changchang Ma, Sheng Feng\",\"doi\":\"10.1016/j.envres.2025.122966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study developed an S-scheme WO<sub>3-x</sub>/MoS<sub>2</sub> heterojunction photocatalytic system coupled with micro-nano bubbles (MNBs) for solar-powered water disinfection. The photogenerated carriers transfer in WO<sub>3-x</sub>/MoS<sub>2</sub> followed an S-scheme route, accumulating photogenerated electrons at the conduction band (CB) of MoS<sub>2</sub> and holes at the valence band (VB) for robust oxygen and H<sub>2</sub>O activation. More importantly, the disinfection performance of WO<sub>3-x</sub>/MoS<sub>2</sub> was strongly dependent on the oxygen vacancy (OV) concentration in precursor WO<sub>3-x</sub>. Consequently, WO<sub>3-x</sub>/MoS<sub>2</sub> achieved 94.23 % inactivation of Escherichia coli (E. coli) and 93.09 % of Staphylococcus aureus (S. aureus) within 20 min under simulated solar irradiation. As expected, the introduction of MNBs significantly enhanced the disinfection efficiency by improving physical mass transfer, providing a sustained oxygen supply, and creating localized oxygen-enriched zones on the catalyst surface through electrostatic attraction. These combined effects broke the limitation of dissolved oxygen (DO) concentration, greatly amplifying reactive oxygen species (ROS) generation. Consequently, the system achieved 98.46 % inactivation of E. coli and 98.90 % of S. aureus within just 10 min. Mechanistic studies confirmed the synergistic action of photothermal conversion and ROS in antibacterial disinfection. This study provides valuable insights into the design of green and highly efficient antibacterial systems.</p>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\" \",\"pages\":\"122966\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envres.2025.122966\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2025.122966","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种S-scheme WO3-x/MoS2异质结耦合微纳气泡(MNBs)光催化体系,用于太阳能水消毒。光生载流子在WO3-x/MoS2中的转移遵循S-scheme路线,在MoS2的导带(CB)和价带(VB)积累光生电子和空穴,以实现强劲的氧和H2O活化。更重要的是,WO3-x/MoS2的消毒性能强烈依赖于前驱体WO3-x中的氧空位(OV)浓度。因此,在模拟太阳照射下,WO3-x/MoS2在20分钟内实现了94.23%的大肠杆菌(E. coli)和93.09%的金黄色葡萄球菌(S. aureus)的失活。正如预期的那样,MNBs的引入通过改善物理传质,提供持续的氧气供应,以及通过静电吸引在催化剂表面形成局部富氧区,显著提高了消毒效率。这些共同作用打破了溶解氧(DO)浓度的限制,大大增加了活性氧(ROS)的产生。因此,该系统在10分钟内实现了98.46%的大肠杆菌和98.90%的金黄色葡萄球菌的灭活。机理研究证实光热转化与活性氧在抗菌消毒中的协同作用。本研究为绿色高效抗菌系统的设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S-scheme WO3-x/MoS2 heterojunction photocatalysis coupling with micro-nano bubbles technology for enhanced antibacterial disinfection in water.

This study developed an S-scheme WO3-x/MoS2 heterojunction photocatalytic system coupled with micro-nano bubbles (MNBs) for solar-powered water disinfection. The photogenerated carriers transfer in WO3-x/MoS2 followed an S-scheme route, accumulating photogenerated electrons at the conduction band (CB) of MoS2 and holes at the valence band (VB) for robust oxygen and H2O activation. More importantly, the disinfection performance of WO3-x/MoS2 was strongly dependent on the oxygen vacancy (OV) concentration in precursor WO3-x. Consequently, WO3-x/MoS2 achieved 94.23 % inactivation of Escherichia coli (E. coli) and 93.09 % of Staphylococcus aureus (S. aureus) within 20 min under simulated solar irradiation. As expected, the introduction of MNBs significantly enhanced the disinfection efficiency by improving physical mass transfer, providing a sustained oxygen supply, and creating localized oxygen-enriched zones on the catalyst surface through electrostatic attraction. These combined effects broke the limitation of dissolved oxygen (DO) concentration, greatly amplifying reactive oxygen species (ROS) generation. Consequently, the system achieved 98.46 % inactivation of E. coli and 98.90 % of S. aureus within just 10 min. Mechanistic studies confirmed the synergistic action of photothermal conversion and ROS in antibacterial disinfection. This study provides valuable insights into the design of green and highly efficient antibacterial systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信