病原菌的呼吸电子激活ZnO@Viologen-COF异质结,促进压电光电子效应对微生物群的调节。

IF 21.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shuteng Wang, Lei Wang, Yifan Liu, Zhenyan Zhang, Zijian Bao, Xu Zhang, Zhiqiang Liang, Shifang Luan, Hengchong Shi, Ping'an Ma
{"title":"病原菌的呼吸电子激活ZnO@Viologen-COF异质结,促进压电光电子效应对微生物群的调节。","authors":"Shuteng Wang, Lei Wang, Yifan Liu, Zhenyan Zhang, Zijian Bao, Xu Zhang, Zhiqiang Liang, Shifang Luan, Hengchong Shi, Ping'an Ma","doi":"10.1016/j.scib.2025.09.019","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiota dysbiosis is a key factor in the development of severe diseases, but its precise regulation remains a challenge. Herein, this study presents a pathogen-responsive piezoelectric heterojunction ZnO@Viologen-covalent organic frameworks (COF) (ZVP) that enables selective modulation of skin microbiota based on bacterial redox characteristics. The ZVP undergoes a structural transformation from ZVP to Re-ZVP, triggered by the respiration activity of Cutibacterium acnes (C. acnes), which enhances its piezo-phototronic properties, while remaining unreactive to commensal bacteria such as Staphylococcus epidermidis (S. epidermidis). This transformation induces a surface charge imbalance in ZVP, thereby boosting the piezo-phototronic effect with a piezoelectric coefficient (d<sub>33</sub>) surge from 41 to 171 pm V<sup>-1</sup>. Concurrently, Re-ZVP exhibits a 166% increase in a higher rate of reactive oxygen species (ROS) generation than ZVP under the synergy of light and ultrasound. This amplified ROS production selectively disrupts C. acnes metabolism without compromising beneficial microbes. In an acne model in mice induced by C. acnes, ZVP demonstrates potent in vivo antibacterial activity against C. acnes and effectively attenuates pathogen-driven inflammation induced by C. acnes. By leveraging bacterial redox heterogeneity, this study pioneers a smart microbial regulation strategy through pathogen-activated piezo-photocatalysis, offering a novel means for targeted microbiota modulation.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":21.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Respiration electron of pathogenic bacteria activated ZnO@Viologen-COF heterojunction to boost piezo-phototronic effect for microbiota regulation.\",\"authors\":\"Shuteng Wang, Lei Wang, Yifan Liu, Zhenyan Zhang, Zijian Bao, Xu Zhang, Zhiqiang Liang, Shifang Luan, Hengchong Shi, Ping'an Ma\",\"doi\":\"10.1016/j.scib.2025.09.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbiota dysbiosis is a key factor in the development of severe diseases, but its precise regulation remains a challenge. Herein, this study presents a pathogen-responsive piezoelectric heterojunction ZnO@Viologen-covalent organic frameworks (COF) (ZVP) that enables selective modulation of skin microbiota based on bacterial redox characteristics. The ZVP undergoes a structural transformation from ZVP to Re-ZVP, triggered by the respiration activity of Cutibacterium acnes (C. acnes), which enhances its piezo-phototronic properties, while remaining unreactive to commensal bacteria such as Staphylococcus epidermidis (S. epidermidis). This transformation induces a surface charge imbalance in ZVP, thereby boosting the piezo-phototronic effect with a piezoelectric coefficient (d<sub>33</sub>) surge from 41 to 171 pm V<sup>-1</sup>. Concurrently, Re-ZVP exhibits a 166% increase in a higher rate of reactive oxygen species (ROS) generation than ZVP under the synergy of light and ultrasound. This amplified ROS production selectively disrupts C. acnes metabolism without compromising beneficial microbes. In an acne model in mice induced by C. acnes, ZVP demonstrates potent in vivo antibacterial activity against C. acnes and effectively attenuates pathogen-driven inflammation induced by C. acnes. By leveraging bacterial redox heterogeneity, this study pioneers a smart microbial regulation strategy through pathogen-activated piezo-photocatalysis, offering a novel means for targeted microbiota modulation.</p>\",\"PeriodicalId\":421,\"journal\":{\"name\":\"Science Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Bulletin\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scib.2025.09.019\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2025.09.019","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微生物群失调是严重疾病发展的关键因素,但其精确调控仍然是一个挑战。在此,本研究提出了一种病原体响应压电异质结ZnO@Viologen-covalent有机框架(COF) (ZVP),可以根据细菌氧化还原特性选择性调节皮肤微生物群。ZVP由痤疮表皮杆菌(C. acnes)的呼吸活性触发,从ZVP到Re-ZVP的结构转变,增强了其压电光电子特性,同时对共生细菌如表皮葡萄球菌(S. epidermidis)保持无反应。这种转变导致ZVP的表面电荷不平衡,从而使压电系数(d33)从41 pm V-1激增到171 pm V-1,从而增强了压电光电子效应。同时,在光和超声的协同作用下,Re-ZVP的活性氧(ROS)生成速率比ZVP高166%。这种扩增的ROS产生选择性地破坏了痤疮C.的代谢,而不损害有益微生物。在痤疮C. acnes诱导的小鼠痤疮模型中,ZVP显示出对C. acnes有效的体内抗菌活性,并有效减轻C. acnes诱导的病原体驱动的炎症。通过利用细菌氧化还原异质性,本研究开创了一种通过病原体激活的压电光催化智能微生物调节策略,为靶向微生物群调节提供了一种新的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Respiration electron of pathogenic bacteria activated ZnO@Viologen-COF heterojunction to boost piezo-phototronic effect for microbiota regulation.

Microbiota dysbiosis is a key factor in the development of severe diseases, but its precise regulation remains a challenge. Herein, this study presents a pathogen-responsive piezoelectric heterojunction ZnO@Viologen-covalent organic frameworks (COF) (ZVP) that enables selective modulation of skin microbiota based on bacterial redox characteristics. The ZVP undergoes a structural transformation from ZVP to Re-ZVP, triggered by the respiration activity of Cutibacterium acnes (C. acnes), which enhances its piezo-phototronic properties, while remaining unreactive to commensal bacteria such as Staphylococcus epidermidis (S. epidermidis). This transformation induces a surface charge imbalance in ZVP, thereby boosting the piezo-phototronic effect with a piezoelectric coefficient (d33) surge from 41 to 171 pm V-1. Concurrently, Re-ZVP exhibits a 166% increase in a higher rate of reactive oxygen species (ROS) generation than ZVP under the synergy of light and ultrasound. This amplified ROS production selectively disrupts C. acnes metabolism without compromising beneficial microbes. In an acne model in mice induced by C. acnes, ZVP demonstrates potent in vivo antibacterial activity against C. acnes and effectively attenuates pathogen-driven inflammation induced by C. acnes. By leveraging bacterial redox heterogeneity, this study pioneers a smart microbial regulation strategy through pathogen-activated piezo-photocatalysis, offering a novel means for targeted microbiota modulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信