Nuo Xu, Xinrui Qi, Zhenqiang Shen, Lianghe Hu, Jun Lv, Yufei Zhong, Bing Wang, Zhigang Zou
{"title":"金属卤化物钙钛矿中的点缺陷","authors":"Nuo Xu, Xinrui Qi, Zhenqiang Shen, Lianghe Hu, Jun Lv, Yufei Zhong, Bing Wang, Zhigang Zou","doi":"10.1038/s42254-025-00861-1","DOIUrl":null,"url":null,"abstract":"Halide perovskites have exceptional optoelectronic properties, including low carrier recombination rates; however, their stability remains a challenge. Point defects play a crucial role in determining their physical characteristics, as they affect carrier dynamics and serve as the initiation sites for various ion migration processes. In the past five years, advances in computational methodologies have deepened the understanding of defect behaviour in these materials. In this Review, we focus on the role of point defects in metal halide perovskites, their impact on carrier dynamics, and ion-migration-related behaviours, and we discuss new understandings of defect tolerance. Point defects can have a critical influence on carrier dynamics and ion migration in metal halide perovskites. This Review surveys recent understandings of point defects and discusses new insights into defect tolerance in these materials.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 10","pages":"554-564"},"PeriodicalIF":39.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point defects in metal halide perovskites\",\"authors\":\"Nuo Xu, Xinrui Qi, Zhenqiang Shen, Lianghe Hu, Jun Lv, Yufei Zhong, Bing Wang, Zhigang Zou\",\"doi\":\"10.1038/s42254-025-00861-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Halide perovskites have exceptional optoelectronic properties, including low carrier recombination rates; however, their stability remains a challenge. Point defects play a crucial role in determining their physical characteristics, as they affect carrier dynamics and serve as the initiation sites for various ion migration processes. In the past five years, advances in computational methodologies have deepened the understanding of defect behaviour in these materials. In this Review, we focus on the role of point defects in metal halide perovskites, their impact on carrier dynamics, and ion-migration-related behaviours, and we discuss new understandings of defect tolerance. Point defects can have a critical influence on carrier dynamics and ion migration in metal halide perovskites. This Review surveys recent understandings of point defects and discusses new insights into defect tolerance in these materials.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"7 10\",\"pages\":\"554-564\"},\"PeriodicalIF\":39.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-025-00861-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00861-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Halide perovskites have exceptional optoelectronic properties, including low carrier recombination rates; however, their stability remains a challenge. Point defects play a crucial role in determining their physical characteristics, as they affect carrier dynamics and serve as the initiation sites for various ion migration processes. In the past five years, advances in computational methodologies have deepened the understanding of defect behaviour in these materials. In this Review, we focus on the role of point defects in metal halide perovskites, their impact on carrier dynamics, and ion-migration-related behaviours, and we discuss new understandings of defect tolerance. Point defects can have a critical influence on carrier dynamics and ion migration in metal halide perovskites. This Review surveys recent understandings of point defects and discusses new insights into defect tolerance in these materials.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.