Rachel Porter, Carolina Trenado-Yuste, Alejandro Martinez-Calvo, Morgan Su, Ned S. Wingreen, Sujit S. Datta, Kerwyn Casey Huang
{"title":"细菌菌落的生长和形态","authors":"Rachel Porter, Carolina Trenado-Yuste, Alejandro Martinez-Calvo, Morgan Su, Ned S. Wingreen, Sujit S. Datta, Kerwyn Casey Huang","doi":"10.1038/s42254-025-00849-x","DOIUrl":null,"url":null,"abstract":"Bacteria are single-celled organisms that inhabit almost every ecosystem on Earth. To overcome challenges in their typically stressful and dynamic natural habitats, bacteria can assemble into macroscopic multicellular aggregates, adopting a structured, communal lifestyle that differs starkly from that of free-living, planktonic cells. Characterization of natural environments suggests that growth in dense aggregates is the primary lifestyle for most bacteria, and in recent years controlled laboratory studies have connected physiological behaviours that are well studied in liquid culture to communal behaviours in bacterial colonies. These increasingly common findings support the idea that many microbial behaviours are best understood in the context of dense aggregates. In this Review, we discuss biophysical studies of the growth and development of such aggregates. We aim to motivate joint experimental and theoretical investigation of the biological and physical underpinnings of communal behaviours within spatially structured bacterial communities. Most bacteria exist in dense aggregates, yet this lifestyle is relatively poorly understood compared with planktonic cultures. This Review explores biophysical models of aggregate development, and how models can be extended to account for the complex behaviours of single-species and multispecies colonies.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 10","pages":"535-553"},"PeriodicalIF":39.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the growth and form of bacterial colonies\",\"authors\":\"Rachel Porter, Carolina Trenado-Yuste, Alejandro Martinez-Calvo, Morgan Su, Ned S. Wingreen, Sujit S. Datta, Kerwyn Casey Huang\",\"doi\":\"10.1038/s42254-025-00849-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacteria are single-celled organisms that inhabit almost every ecosystem on Earth. To overcome challenges in their typically stressful and dynamic natural habitats, bacteria can assemble into macroscopic multicellular aggregates, adopting a structured, communal lifestyle that differs starkly from that of free-living, planktonic cells. Characterization of natural environments suggests that growth in dense aggregates is the primary lifestyle for most bacteria, and in recent years controlled laboratory studies have connected physiological behaviours that are well studied in liquid culture to communal behaviours in bacterial colonies. These increasingly common findings support the idea that many microbial behaviours are best understood in the context of dense aggregates. In this Review, we discuss biophysical studies of the growth and development of such aggregates. We aim to motivate joint experimental and theoretical investigation of the biological and physical underpinnings of communal behaviours within spatially structured bacterial communities. Most bacteria exist in dense aggregates, yet this lifestyle is relatively poorly understood compared with planktonic cultures. This Review explores biophysical models of aggregate development, and how models can be extended to account for the complex behaviours of single-species and multispecies colonies.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"7 10\",\"pages\":\"535-553\"},\"PeriodicalIF\":39.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-025-00849-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00849-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Bacteria are single-celled organisms that inhabit almost every ecosystem on Earth. To overcome challenges in their typically stressful and dynamic natural habitats, bacteria can assemble into macroscopic multicellular aggregates, adopting a structured, communal lifestyle that differs starkly from that of free-living, planktonic cells. Characterization of natural environments suggests that growth in dense aggregates is the primary lifestyle for most bacteria, and in recent years controlled laboratory studies have connected physiological behaviours that are well studied in liquid culture to communal behaviours in bacterial colonies. These increasingly common findings support the idea that many microbial behaviours are best understood in the context of dense aggregates. In this Review, we discuss biophysical studies of the growth and development of such aggregates. We aim to motivate joint experimental and theoretical investigation of the biological and physical underpinnings of communal behaviours within spatially structured bacterial communities. Most bacteria exist in dense aggregates, yet this lifestyle is relatively poorly understood compared with planktonic cultures. This Review explores biophysical models of aggregate development, and how models can be extended to account for the complex behaviours of single-species and multispecies colonies.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.