半空间中的KPP行波

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Julien Berestycki, Cole Graham, Yujin H. Kim, Bastien Mallein
{"title":"半空间中的KPP行波","authors":"Julien Berestycki,&nbsp;Cole Graham,&nbsp;Yujin H. Kim,&nbsp;Bastien Mallein","doi":"10.1007/s00220-025-05445-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study traveling waves of the KPP equation in the half-space with Dirichlet boundary conditions. We show that minimal-speed waves are unique up to translation and rotation but faster waves are not. We represent our waves as Laplace transforms of martingales associated to branching Brownian motion in the half-plane with killing on the boundary. We thereby identify the waves’ asymptotic behavior and uncover a novel feature of the minimal-speed wave <span>\\(\\Phi \\)</span>. Far from the boundary, <span>\\(\\Phi \\)</span> converges to a <i>logarithmic shift</i> of the 1D wave <i>w</i> of the same speed: <span>\\(\\displaystyle \\lim _{y \\rightarrow \\infty } \\Phi \\big (x + \\tfrac{1}{\\sqrt{2}}\\log y, y\\big ) = w(x)\\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KPP Traveling Waves in the Half-Space\",\"authors\":\"Julien Berestycki,&nbsp;Cole Graham,&nbsp;Yujin H. Kim,&nbsp;Bastien Mallein\",\"doi\":\"10.1007/s00220-025-05445-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study traveling waves of the KPP equation in the half-space with Dirichlet boundary conditions. We show that minimal-speed waves are unique up to translation and rotation but faster waves are not. We represent our waves as Laplace transforms of martingales associated to branching Brownian motion in the half-plane with killing on the boundary. We thereby identify the waves’ asymptotic behavior and uncover a novel feature of the minimal-speed wave <span>\\\\(\\\\Phi \\\\)</span>. Far from the boundary, <span>\\\\(\\\\Phi \\\\)</span> converges to a <i>logarithmic shift</i> of the 1D wave <i>w</i> of the same speed: <span>\\\\(\\\\displaystyle \\\\lim _{y \\\\rightarrow \\\\infty } \\\\Phi \\\\big (x + \\\\tfrac{1}{\\\\sqrt{2}}\\\\log y, y\\\\big ) = w(x)\\\\)</span>.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05445-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05445-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有Dirichlet边界条件的半空间中KPP方程的行波。我们表明,最低速度的波是独特的平移和旋转,但更快的波不是。我们将波表示为与半平面上的分支布朗运动相关的鞅的拉普拉斯变换,边界上有杀戮。因此,我们确定了波的渐近行为,并揭示了最小速度波的新特征\(\Phi \)。在远离边界处,\(\Phi \)收敛为相同速度的一维波w的对数位移:\(\displaystyle \lim _{y \rightarrow \infty } \Phi \big (x + \tfrac{1}{\sqrt{2}}\log y, y\big ) = w(x)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KPP Traveling Waves in the Half-Space

We study traveling waves of the KPP equation in the half-space with Dirichlet boundary conditions. We show that minimal-speed waves are unique up to translation and rotation but faster waves are not. We represent our waves as Laplace transforms of martingales associated to branching Brownian motion in the half-plane with killing on the boundary. We thereby identify the waves’ asymptotic behavior and uncover a novel feature of the minimal-speed wave \(\Phi \). Far from the boundary, \(\Phi \) converges to a logarithmic shift of the 1D wave w of the same speed: \(\displaystyle \lim _{y \rightarrow \infty } \Phi \big (x + \tfrac{1}{\sqrt{2}}\log y, y\big ) = w(x)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信