可容许级\(\mathfrak {sl}_{3}\)最小模型的模块化

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Justine Fasquel, Christopher Raymond, David Ridout
{"title":"可容许级\\(\\mathfrak {sl}_{3}\\)最小模型的模块化","authors":"Justine Fasquel,&nbsp;Christopher Raymond,&nbsp;David Ridout","doi":"10.1007/s00220-025-05447-7","DOIUrl":null,"url":null,"abstract":"<div><p>We use the newly developed technique of inverse quantum hamiltonian reduction to investigate the representation theory of the simple affine vertex algebra <span>\\(\\textsf{A}_2(\\textsf{u},2)\\)</span> associated to <span>\\(\\mathfrak {sl}_{3}\\)</span> at level <span>\\(\\textsf{k}= -3+\\frac{\\textsf{u}}{2}\\)</span>, for <span>\\(\\textsf{u}\\geqslant 3\\)</span> odd. Starting from the irreducible modules of the corresponding simple Bershadsky-Polyakov vertex operator algebras, we show that inverse reduction constructs all irreducible lower-bounded weight <span>\\(\\textsf{A}_2(\\textsf{u},2)\\)</span>-modules. This proceeds by first constructing a complete set of coherent families of fully relaxed highest-weight <span>\\(\\textsf{A}_2(\\textsf{u},2)\\)</span>-modules and then noting that the reducible members of these families degenerate to give all remaining irreducibles. Using this fully relaxed construction and the degenerations, we deduce modular S-transforms for certain natural generalised characters of these irreducibles and their spectral flows. With this modular data in hand, we verify that the (conjectural) standard Verlinde formula predicts Grothendieck fusion rules with nonnegative-integer multiplicities.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modularity of Admissible-Level \\\\(\\\\mathfrak {sl}_{3}\\\\) Minimal Models with Denominator 2\",\"authors\":\"Justine Fasquel,&nbsp;Christopher Raymond,&nbsp;David Ridout\",\"doi\":\"10.1007/s00220-025-05447-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use the newly developed technique of inverse quantum hamiltonian reduction to investigate the representation theory of the simple affine vertex algebra <span>\\\\(\\\\textsf{A}_2(\\\\textsf{u},2)\\\\)</span> associated to <span>\\\\(\\\\mathfrak {sl}_{3}\\\\)</span> at level <span>\\\\(\\\\textsf{k}= -3+\\\\frac{\\\\textsf{u}}{2}\\\\)</span>, for <span>\\\\(\\\\textsf{u}\\\\geqslant 3\\\\)</span> odd. Starting from the irreducible modules of the corresponding simple Bershadsky-Polyakov vertex operator algebras, we show that inverse reduction constructs all irreducible lower-bounded weight <span>\\\\(\\\\textsf{A}_2(\\\\textsf{u},2)\\\\)</span>-modules. This proceeds by first constructing a complete set of coherent families of fully relaxed highest-weight <span>\\\\(\\\\textsf{A}_2(\\\\textsf{u},2)\\\\)</span>-modules and then noting that the reducible members of these families degenerate to give all remaining irreducibles. Using this fully relaxed construction and the degenerations, we deduce modular S-transforms for certain natural generalised characters of these irreducibles and their spectral flows. With this modular data in hand, we verify that the (conjectural) standard Verlinde formula predicts Grothendieck fusion rules with nonnegative-integer multiplicities.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05447-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05447-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们使用新开发的逆量子哈密顿约简技术来研究与\(\mathfrak {sl}_{3}\)在\(\textsf{k}= -3+\frac{\textsf{u}}{2}\)级相关的简单仿射顶点代数\(\textsf{A}_2(\textsf{u},2)\)的表示理论,对于\(\textsf{u}\geqslant 3\)奇数。从相应的简单Bershadsky-Polyakov顶点算子代数的不可约模出发,证明了逆约化构造了所有不可约的下界权\(\textsf{A}_2(\textsf{u},2)\) -模。首先构造了一组完全松弛最高权\(\textsf{A}_2(\textsf{u},2)\) -模的相干族的完备集,然后注意到这些族的可约成员退化到给出所有剩余的不可约。利用这种完全松弛构造和退化,我们推导出这些不可约物及其谱流的某些自然广义特征的模s变换。有了这些模数据,我们验证了(推测的)标准Verlinde公式预测了具有非负整数多重性的Grothendieck融合规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modularity of Admissible-Level \(\mathfrak {sl}_{3}\) Minimal Models with Denominator 2

We use the newly developed technique of inverse quantum hamiltonian reduction to investigate the representation theory of the simple affine vertex algebra \(\textsf{A}_2(\textsf{u},2)\) associated to \(\mathfrak {sl}_{3}\) at level \(\textsf{k}= -3+\frac{\textsf{u}}{2}\), for \(\textsf{u}\geqslant 3\) odd. Starting from the irreducible modules of the corresponding simple Bershadsky-Polyakov vertex operator algebras, we show that inverse reduction constructs all irreducible lower-bounded weight \(\textsf{A}_2(\textsf{u},2)\)-modules. This proceeds by first constructing a complete set of coherent families of fully relaxed highest-weight \(\textsf{A}_2(\textsf{u},2)\)-modules and then noting that the reducible members of these families degenerate to give all remaining irreducibles. Using this fully relaxed construction and the degenerations, we deduce modular S-transforms for certain natural generalised characters of these irreducibles and their spectral flows. With this modular data in hand, we verify that the (conjectural) standard Verlinde formula predicts Grothendieck fusion rules with nonnegative-integer multiplicities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信