无碰撞气体的Oppenheimer-Snyder型坍缩

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Håkan Andréasson, Gerhard Rein
{"title":"无碰撞气体的Oppenheimer-Snyder型坍缩","authors":"Håkan Andréasson,&nbsp;Gerhard Rein","doi":"10.1007/s00220-025-05463-7","DOIUrl":null,"url":null,"abstract":"<div><p>In 1939, Oppenheimer and Snyder showed that the continued gravitational collapse of a self-gravitating matter distribution can result in the formation of a black hole, cf. Oppenheimer and Snyder (Phys Rev 56:455–459, 1939). In this paper, which has greatly influenced the evolution of ideas around the concept of a black hole, matter was modeled as dust, a fluid with pressure equal to zero. We prove that when the corresponding initial data are suitably approximated by data for a collisionless gas as modeled by the Vlasov equation, then a trapped surface forms before the corresponding solution to the Einstein–Vlasov system can develop a singularity and again a black hole arises. As opposed to the dust case the pressure does not vanish for such solutions. As a necessary starting point for the analysis, which is carried out in Painlevé–Gullstrand coordinates, we prove a local existence and uniqueness theorem for regular solutions together with a corresponding extension criterion. The latter result will also become useful when one perturbs dust solutions containing naked singularities in the Vlasov framework.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05463-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Oppenheimer–Snyder Type Collapse for a Collisionless Gas\",\"authors\":\"Håkan Andréasson,&nbsp;Gerhard Rein\",\"doi\":\"10.1007/s00220-025-05463-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1939, Oppenheimer and Snyder showed that the continued gravitational collapse of a self-gravitating matter distribution can result in the formation of a black hole, cf. Oppenheimer and Snyder (Phys Rev 56:455–459, 1939). In this paper, which has greatly influenced the evolution of ideas around the concept of a black hole, matter was modeled as dust, a fluid with pressure equal to zero. We prove that when the corresponding initial data are suitably approximated by data for a collisionless gas as modeled by the Vlasov equation, then a trapped surface forms before the corresponding solution to the Einstein–Vlasov system can develop a singularity and again a black hole arises. As opposed to the dust case the pressure does not vanish for such solutions. As a necessary starting point for the analysis, which is carried out in Painlevé–Gullstrand coordinates, we prove a local existence and uniqueness theorem for regular solutions together with a corresponding extension criterion. The latter result will also become useful when one perturbs dust solutions containing naked singularities in the Vlasov framework.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05463-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05463-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05463-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

1939年,Oppenheimer和Snyder证明了自引力物质分布的持续引力坍缩可以导致黑洞的形成,参见Oppenheimer和Snyder (Phys Rev 56:45 55 - 459, 1939)。在这篇论文中,物质被建模为尘埃,一种压力等于零的流体,这极大地影响了围绕黑洞概念的思想演变。我们证明了当相应的初始数据被Vlasov方程模拟的无碰撞气体的数据适当地近似时,在爱因斯坦- Vlasov系统的相应解形成奇点之前,会形成一个捕获面,然后再次出现黑洞。与灰尘情况相反,这种溶液的压力不会消失。作为分析的必要起点,我们证明了正则解的局部存在唯一性定理,并给出了相应的可拓准则。当在弗拉索夫框架中扰动含有裸奇点的尘埃解时,后一种结果也将变得有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oppenheimer–Snyder Type Collapse for a Collisionless Gas

In 1939, Oppenheimer and Snyder showed that the continued gravitational collapse of a self-gravitating matter distribution can result in the formation of a black hole, cf. Oppenheimer and Snyder (Phys Rev 56:455–459, 1939). In this paper, which has greatly influenced the evolution of ideas around the concept of a black hole, matter was modeled as dust, a fluid with pressure equal to zero. We prove that when the corresponding initial data are suitably approximated by data for a collisionless gas as modeled by the Vlasov equation, then a trapped surface forms before the corresponding solution to the Einstein–Vlasov system can develop a singularity and again a black hole arises. As opposed to the dust case the pressure does not vanish for such solutions. As a necessary starting point for the analysis, which is carried out in Painlevé–Gullstrand coordinates, we prove a local existence and uniqueness theorem for regular solutions together with a corresponding extension criterion. The latter result will also become useful when one perturbs dust solutions containing naked singularities in the Vlasov framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信