{"title":"无碰撞气体的Oppenheimer-Snyder型坍缩","authors":"Håkan Andréasson, Gerhard Rein","doi":"10.1007/s00220-025-05463-7","DOIUrl":null,"url":null,"abstract":"<div><p>In 1939, Oppenheimer and Snyder showed that the continued gravitational collapse of a self-gravitating matter distribution can result in the formation of a black hole, cf. Oppenheimer and Snyder (Phys Rev 56:455–459, 1939). In this paper, which has greatly influenced the evolution of ideas around the concept of a black hole, matter was modeled as dust, a fluid with pressure equal to zero. We prove that when the corresponding initial data are suitably approximated by data for a collisionless gas as modeled by the Vlasov equation, then a trapped surface forms before the corresponding solution to the Einstein–Vlasov system can develop a singularity and again a black hole arises. As opposed to the dust case the pressure does not vanish for such solutions. As a necessary starting point for the analysis, which is carried out in Painlevé–Gullstrand coordinates, we prove a local existence and uniqueness theorem for regular solutions together with a corresponding extension criterion. The latter result will also become useful when one perturbs dust solutions containing naked singularities in the Vlasov framework.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05463-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Oppenheimer–Snyder Type Collapse for a Collisionless Gas\",\"authors\":\"Håkan Andréasson, Gerhard Rein\",\"doi\":\"10.1007/s00220-025-05463-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1939, Oppenheimer and Snyder showed that the continued gravitational collapse of a self-gravitating matter distribution can result in the formation of a black hole, cf. Oppenheimer and Snyder (Phys Rev 56:455–459, 1939). In this paper, which has greatly influenced the evolution of ideas around the concept of a black hole, matter was modeled as dust, a fluid with pressure equal to zero. We prove that when the corresponding initial data are suitably approximated by data for a collisionless gas as modeled by the Vlasov equation, then a trapped surface forms before the corresponding solution to the Einstein–Vlasov system can develop a singularity and again a black hole arises. As opposed to the dust case the pressure does not vanish for such solutions. As a necessary starting point for the analysis, which is carried out in Painlevé–Gullstrand coordinates, we prove a local existence and uniqueness theorem for regular solutions together with a corresponding extension criterion. The latter result will also become useful when one perturbs dust solutions containing naked singularities in the Vlasov framework.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05463-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05463-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05463-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Oppenheimer–Snyder Type Collapse for a Collisionless Gas
In 1939, Oppenheimer and Snyder showed that the continued gravitational collapse of a self-gravitating matter distribution can result in the formation of a black hole, cf. Oppenheimer and Snyder (Phys Rev 56:455–459, 1939). In this paper, which has greatly influenced the evolution of ideas around the concept of a black hole, matter was modeled as dust, a fluid with pressure equal to zero. We prove that when the corresponding initial data are suitably approximated by data for a collisionless gas as modeled by the Vlasov equation, then a trapped surface forms before the corresponding solution to the Einstein–Vlasov system can develop a singularity and again a black hole arises. As opposed to the dust case the pressure does not vanish for such solutions. As a necessary starting point for the analysis, which is carried out in Painlevé–Gullstrand coordinates, we prove a local existence and uniqueness theorem for regular solutions together with a corresponding extension criterion. The latter result will also become useful when one perturbs dust solutions containing naked singularities in the Vlasov framework.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.