基于EGNN和变压器的高超声速目标弹道预测方法

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yue Xu;Baoquan Hu;Quan Pan
{"title":"基于EGNN和变压器的高超声速目标弹道预测方法","authors":"Yue Xu;Baoquan Hu;Quan Pan","doi":"10.1109/JSEN.2025.3597711","DOIUrl":null,"url":null,"abstract":"To address the issues of long-term dependency and insufficient local feature extraction in traditional methods when processing hypersonic target trajectory data, this article proposes an innovative trajectory prediction method that integrates equivariant graph neural networks (EGNNs) and Transformer architecture. Specifically, by constructing dynamic graph structures to model the geometric motion characteristics of the target, EGNN uses an equivariant message-passing mechanism to extract spatial features with SE (3) covariance. Meanwhile, the Transformer, with its multihead attention mechanism and geometric correction attention module, explicitly captures the long-term spatiotemporal dependencies in the trajectory data. To further enhance the model’s performance, an improved whale optimization algorithm (IWOA) is proposed, which dynamically regulates the learning rate using Lyapunov stability theory and combines Hamiltonian dynamics to reconstruct the predation strategy, significantly improving global search ability and convergence efficiency. Additionally, the AdamW optimizer is used to independently handle the weight decay term, effectively suppressing overfitting. The experimental results show that the proposed method achieves a position prediction root-mean-square error (RMSE) of 532.1 m and a velocity prediction RMSE of 268.3 m/s on the Northwestern Polytechnical University (NPU) trajectory dataset, improving accuracy by 23.8% and 38.8%, respectively, compared to the next-best method. Moreover, the model’s parameter count (2.75 M) and computational cost (5.68 GFLOPs) are significantly lower than those of the comparison models. Ablation experiments verify the effectiveness of the EGNN equivariant feature, IWOA dynamic optimization mechanism, and AdamW regularization strategy, providing a solution that balances both accuracy and efficiency for hypersonic target trajectory prediction.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 19","pages":"37499-37511"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hypersonic Target Trajectory Prediction Method Based on EGNN and Transformer\",\"authors\":\"Yue Xu;Baoquan Hu;Quan Pan\",\"doi\":\"10.1109/JSEN.2025.3597711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the issues of long-term dependency and insufficient local feature extraction in traditional methods when processing hypersonic target trajectory data, this article proposes an innovative trajectory prediction method that integrates equivariant graph neural networks (EGNNs) and Transformer architecture. Specifically, by constructing dynamic graph structures to model the geometric motion characteristics of the target, EGNN uses an equivariant message-passing mechanism to extract spatial features with SE (3) covariance. Meanwhile, the Transformer, with its multihead attention mechanism and geometric correction attention module, explicitly captures the long-term spatiotemporal dependencies in the trajectory data. To further enhance the model’s performance, an improved whale optimization algorithm (IWOA) is proposed, which dynamically regulates the learning rate using Lyapunov stability theory and combines Hamiltonian dynamics to reconstruct the predation strategy, significantly improving global search ability and convergence efficiency. Additionally, the AdamW optimizer is used to independently handle the weight decay term, effectively suppressing overfitting. The experimental results show that the proposed method achieves a position prediction root-mean-square error (RMSE) of 532.1 m and a velocity prediction RMSE of 268.3 m/s on the Northwestern Polytechnical University (NPU) trajectory dataset, improving accuracy by 23.8% and 38.8%, respectively, compared to the next-best method. Moreover, the model’s parameter count (2.75 M) and computational cost (5.68 GFLOPs) are significantly lower than those of the comparison models. Ablation experiments verify the effectiveness of the EGNN equivariant feature, IWOA dynamic optimization mechanism, and AdamW regularization strategy, providing a solution that balances both accuracy and efficiency for hypersonic target trajectory prediction.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 19\",\"pages\":\"37499-37511\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11145270/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11145270/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对传统方法在处理高超声速目标弹道数据时存在的长期依赖和局部特征提取不足的问题,提出了一种将等变图神经网络(EGNNs)与Transformer架构相结合的创新性弹道预测方法。具体而言,EGNN通过构建动态图结构来模拟目标的几何运动特征,采用等变消息传递机制提取具有SE(3)协方差的空间特征。同时,变压器通过其多头注意机制和几何校正注意模块,明确捕获了轨迹数据中的长期时空依赖关系。为了进一步提高模型的性能,提出了一种改进的鲸鱼优化算法(IWOA),该算法利用Lyapunov稳定性理论动态调节学习率,并结合哈密尔顿动力学重构捕食策略,显著提高了全局搜索能力和收敛效率。此外,AdamW优化器用于独立处理权重衰减项,有效抑制过拟合。实验结果表明,该方法在西北工业大学(NPU)弹道数据集上的位置预测均方根误差(RMSE)为532.1 m,速度预测均方根误差(RMSE)为268.3 m/s,精度分别比第二优方法提高23.8%和38.8%。模型的参数数(2.75 M)和计算成本(5.68 GFLOPs)显著低于对比模型。烧蚀实验验证了EGNN等变特征、IWOA动态优化机制和AdamW正则化策略的有效性,为高超声速目标弹道预测提供了精度与效率兼顾的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hypersonic Target Trajectory Prediction Method Based on EGNN and Transformer
To address the issues of long-term dependency and insufficient local feature extraction in traditional methods when processing hypersonic target trajectory data, this article proposes an innovative trajectory prediction method that integrates equivariant graph neural networks (EGNNs) and Transformer architecture. Specifically, by constructing dynamic graph structures to model the geometric motion characteristics of the target, EGNN uses an equivariant message-passing mechanism to extract spatial features with SE (3) covariance. Meanwhile, the Transformer, with its multihead attention mechanism and geometric correction attention module, explicitly captures the long-term spatiotemporal dependencies in the trajectory data. To further enhance the model’s performance, an improved whale optimization algorithm (IWOA) is proposed, which dynamically regulates the learning rate using Lyapunov stability theory and combines Hamiltonian dynamics to reconstruct the predation strategy, significantly improving global search ability and convergence efficiency. Additionally, the AdamW optimizer is used to independently handle the weight decay term, effectively suppressing overfitting. The experimental results show that the proposed method achieves a position prediction root-mean-square error (RMSE) of 532.1 m and a velocity prediction RMSE of 268.3 m/s on the Northwestern Polytechnical University (NPU) trajectory dataset, improving accuracy by 23.8% and 38.8%, respectively, compared to the next-best method. Moreover, the model’s parameter count (2.75 M) and computational cost (5.68 GFLOPs) are significantly lower than those of the comparison models. Ablation experiments verify the effectiveness of the EGNN equivariant feature, IWOA dynamic optimization mechanism, and AdamW regularization strategy, providing a solution that balances both accuracy and efficiency for hypersonic target trajectory prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信