{"title":"原始和双壁碳纳米管增强聚(2,5-苯并咪唑)聚合物在LEO中辐射屏蔽性能的辐射诱导降解","authors":"Bosco Oryema , Lynndle Square , Ernst Ellis","doi":"10.1016/j.asr.2025.08.065","DOIUrl":null,"url":null,"abstract":"<div><div>Degradation in the properties of polymer-based materials in space environments is a critical challenge for developing lightweight radiation shielding solutions. In this paper, a comparative study of the impacts of helium ion (He<sup>+</sup>) irradiation one of the ion species in the Low Earth Orbit (LEO) environment on the structural and optical properties of pristine and 1.0 wt% double-walled carbon nanotube (DWCNT)-enhanced poly(2,5-benzimidazole) (ABPBI) polymers for LEO radiation shielding applications was conducted. The two polymer categories were separately chemically prepared in the laboratory, moulded, dried, and cut into 1 cm × 1 cm pieces, and bombarded with 0.35 MeV He<sup>+</sup> ions at varying fluences. The Ultraviolet–Visible-Near-Infrared (UV–Vis-NIR) optical analyses of the polymers following the ion bombardment revealed that He<sup>+</sup> irradiation considerably raises the Urbach energy and decreases the optical bandgap, indicating a rise in electronic defects and structural disorder. On the other hand, the Fourier Transform Infrared (FTIR), Atomic Force Microscopy (AFM), and X-ray Diffraction (XRD) analyses revealed higher levels of structural degradation in the pristine ABPBI samples, suggesting changes brought about by irradiation-induced oxidation and chain scission processes. In contrast, the 1.0 wt% DWCNT-ABPBI composite demonstrated improved optical and structural integrity, retention, and resistance to He<sup>+</sup> ion-induced damage. According to the results, 1.0 wt% DWCNT reinforcement reduces radiation-induced deterioration and offers more protection from energetic ion exposure in the LEO settings. Thus, this work highlights the distinct impact of He<sup>+</sup> ion interactions with ABPBI and the effectiveness of DWCNT inclusion in improving polymer resilience, and it contributes to the fundamental understanding of the polymer composite for radiation shielding applications.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"76 9","pages":"Pages 5406-5418"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation-induced degradation in the properties of pristine and double-walled carbon nanotube-enhanced poly(2,5-benzimidazole) polymers for radiation shielding in the LEO\",\"authors\":\"Bosco Oryema , Lynndle Square , Ernst Ellis\",\"doi\":\"10.1016/j.asr.2025.08.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Degradation in the properties of polymer-based materials in space environments is a critical challenge for developing lightweight radiation shielding solutions. In this paper, a comparative study of the impacts of helium ion (He<sup>+</sup>) irradiation one of the ion species in the Low Earth Orbit (LEO) environment on the structural and optical properties of pristine and 1.0 wt% double-walled carbon nanotube (DWCNT)-enhanced poly(2,5-benzimidazole) (ABPBI) polymers for LEO radiation shielding applications was conducted. The two polymer categories were separately chemically prepared in the laboratory, moulded, dried, and cut into 1 cm × 1 cm pieces, and bombarded with 0.35 MeV He<sup>+</sup> ions at varying fluences. The Ultraviolet–Visible-Near-Infrared (UV–Vis-NIR) optical analyses of the polymers following the ion bombardment revealed that He<sup>+</sup> irradiation considerably raises the Urbach energy and decreases the optical bandgap, indicating a rise in electronic defects and structural disorder. On the other hand, the Fourier Transform Infrared (FTIR), Atomic Force Microscopy (AFM), and X-ray Diffraction (XRD) analyses revealed higher levels of structural degradation in the pristine ABPBI samples, suggesting changes brought about by irradiation-induced oxidation and chain scission processes. In contrast, the 1.0 wt% DWCNT-ABPBI composite demonstrated improved optical and structural integrity, retention, and resistance to He<sup>+</sup> ion-induced damage. According to the results, 1.0 wt% DWCNT reinforcement reduces radiation-induced deterioration and offers more protection from energetic ion exposure in the LEO settings. Thus, this work highlights the distinct impact of He<sup>+</sup> ion interactions with ABPBI and the effectiveness of DWCNT inclusion in improving polymer resilience, and it contributes to the fundamental understanding of the polymer composite for radiation shielding applications.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":\"76 9\",\"pages\":\"Pages 5406-5418\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117725009561\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117725009561","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Radiation-induced degradation in the properties of pristine and double-walled carbon nanotube-enhanced poly(2,5-benzimidazole) polymers for radiation shielding in the LEO
Degradation in the properties of polymer-based materials in space environments is a critical challenge for developing lightweight radiation shielding solutions. In this paper, a comparative study of the impacts of helium ion (He+) irradiation one of the ion species in the Low Earth Orbit (LEO) environment on the structural and optical properties of pristine and 1.0 wt% double-walled carbon nanotube (DWCNT)-enhanced poly(2,5-benzimidazole) (ABPBI) polymers for LEO radiation shielding applications was conducted. The two polymer categories were separately chemically prepared in the laboratory, moulded, dried, and cut into 1 cm × 1 cm pieces, and bombarded with 0.35 MeV He+ ions at varying fluences. The Ultraviolet–Visible-Near-Infrared (UV–Vis-NIR) optical analyses of the polymers following the ion bombardment revealed that He+ irradiation considerably raises the Urbach energy and decreases the optical bandgap, indicating a rise in electronic defects and structural disorder. On the other hand, the Fourier Transform Infrared (FTIR), Atomic Force Microscopy (AFM), and X-ray Diffraction (XRD) analyses revealed higher levels of structural degradation in the pristine ABPBI samples, suggesting changes brought about by irradiation-induced oxidation and chain scission processes. In contrast, the 1.0 wt% DWCNT-ABPBI composite demonstrated improved optical and structural integrity, retention, and resistance to He+ ion-induced damage. According to the results, 1.0 wt% DWCNT reinforcement reduces radiation-induced deterioration and offers more protection from energetic ion exposure in the LEO settings. Thus, this work highlights the distinct impact of He+ ion interactions with ABPBI and the effectiveness of DWCNT inclusion in improving polymer resilience, and it contributes to the fundamental understanding of the polymer composite for radiation shielding applications.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.