带引力的欧拉方程的完全平衡和熵稳定格式:一般状态方程

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Victor Michel-Dansac, Andrea Thomann
{"title":"带引力的欧拉方程的完全平衡和熵稳定格式:一般状态方程","authors":"Victor Michel-Dansac,&nbsp;Andrea Thomann","doi":"10.1016/j.compfluid.2025.106853","DOIUrl":null,"url":null,"abstract":"<div><div>The present work concerns the derivation of a fully well-balanced Godunov-type finite volume scheme for the Euler equations with a gravitational potential based on an approximate Riemann solver in a one-dimensional framework. It is an extension to general equations of states of the entropy-stable and fully well-balanced scheme for ideal gases recently forwarded in Berthon et al., (2025). A second-order extension preserving the properties of the first-order scheme is given. The scheme is provably entropy-stable and positivity-preserving for all thermodynamic variables. Numerical test cases illustrate the performance and entropy stability of the new scheme, using six different equations of state as examples, four analytic and two tabulated ones.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"303 ","pages":"Article 106853"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a fully well-balanced and entropy-stable scheme for the Euler equations with gravity: General equations of state\",\"authors\":\"Victor Michel-Dansac,&nbsp;Andrea Thomann\",\"doi\":\"10.1016/j.compfluid.2025.106853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present work concerns the derivation of a fully well-balanced Godunov-type finite volume scheme for the Euler equations with a gravitational potential based on an approximate Riemann solver in a one-dimensional framework. It is an extension to general equations of states of the entropy-stable and fully well-balanced scheme for ideal gases recently forwarded in Berthon et al., (2025). A second-order extension preserving the properties of the first-order scheme is given. The scheme is provably entropy-stable and positivity-preserving for all thermodynamic variables. Numerical test cases illustrate the performance and entropy stability of the new scheme, using six different equations of state as examples, four analytic and two tabulated ones.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"303 \",\"pages\":\"Article 106853\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025003135\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025003135","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于一维框架下的近似黎曼解算器,推导了具有引力势的欧拉方程的完全平衡godunovo型有限体积格式。它是Berthon等人(2025)最近提出的理想气体的熵稳定和完全平衡方案的一般状态方程的扩展。给出了保持一阶格式性质的二阶扩展。可证明该方案对所有热力学变量都是熵稳定和保正的。以6种状态方程、4种解析状态方程和2种表列状态方程为例,进行了数值测试,验证了该方法的性能和熵稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a fully well-balanced and entropy-stable scheme for the Euler equations with gravity: General equations of state
The present work concerns the derivation of a fully well-balanced Godunov-type finite volume scheme for the Euler equations with a gravitational potential based on an approximate Riemann solver in a one-dimensional framework. It is an extension to general equations of states of the entropy-stable and fully well-balanced scheme for ideal gases recently forwarded in Berthon et al., (2025). A second-order extension preserving the properties of the first-order scheme is given. The scheme is provably entropy-stable and positivity-preserving for all thermodynamic variables. Numerical test cases illustrate the performance and entropy stability of the new scheme, using six different equations of state as examples, four analytic and two tabulated ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信