一种融合船岸语音通信的船舶轨迹预测模型,用于航道交叉口的早期预测

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Yang Chen , Xucun Qi , Dong Yang , Changhai Huang , Jian Zheng
{"title":"一种融合船岸语音通信的船舶轨迹预测模型,用于航道交叉口的早期预测","authors":"Yang Chen ,&nbsp;Xucun Qi ,&nbsp;Dong Yang ,&nbsp;Changhai Huang ,&nbsp;Jian Zheng","doi":"10.1016/j.oceaneng.2025.122934","DOIUrl":null,"url":null,"abstract":"<div><div>Early ship trajectory prediction improves traffic coordination but increases the risk of intent misjudgment at waterway intersections, leading to deviations between predicted and actual trajectories. To address this, we propose a ship trajectory prediction model grounded in the International Maritime Organization (IMO) framework and the rule of “intent report - ship maneuver - trajectory change” observed in real-world waterway intersections. Our method enables early intent recognition by leveraging intent information embedded in ship-shore speech communication. Within a defined spatiotemporal range, we associate communication data with observed trajectories to identify reported intentions. The extracted intent labels are integrated with encoded historical trajectory features and fed into a decoder, dynamically constraining predicted directions. This alignment with reported intent advances the prediction timeline without compromising accuracy. Empirical validation at the Wusongkou Estuary (Shanghai, China) demonstrates that our model advances the prediction timeline by 6.94–8.4 min compared to existing models, while maintaining similar accuracy. This work pioneers the integration of ship-shore speech communication into trajectory prediction, highlighting the potential of AI-driven maritime safety systems.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"342 ","pages":"Article 122934"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A ship trajectory prediction model integrating ship-shore speech communication for early prediction at waterway intersections\",\"authors\":\"Yang Chen ,&nbsp;Xucun Qi ,&nbsp;Dong Yang ,&nbsp;Changhai Huang ,&nbsp;Jian Zheng\",\"doi\":\"10.1016/j.oceaneng.2025.122934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Early ship trajectory prediction improves traffic coordination but increases the risk of intent misjudgment at waterway intersections, leading to deviations between predicted and actual trajectories. To address this, we propose a ship trajectory prediction model grounded in the International Maritime Organization (IMO) framework and the rule of “intent report - ship maneuver - trajectory change” observed in real-world waterway intersections. Our method enables early intent recognition by leveraging intent information embedded in ship-shore speech communication. Within a defined spatiotemporal range, we associate communication data with observed trajectories to identify reported intentions. The extracted intent labels are integrated with encoded historical trajectory features and fed into a decoder, dynamically constraining predicted directions. This alignment with reported intent advances the prediction timeline without compromising accuracy. Empirical validation at the Wusongkou Estuary (Shanghai, China) demonstrates that our model advances the prediction timeline by 6.94–8.4 min compared to existing models, while maintaining similar accuracy. This work pioneers the integration of ship-shore speech communication into trajectory prediction, highlighting the potential of AI-driven maritime safety systems.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"342 \",\"pages\":\"Article 122934\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825026174\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825026174","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

早期船舶轨迹预测提高了交通协调能力,但增加了航道交叉口意图误判的风险,导致预测轨迹与实际轨迹之间存在偏差。为了解决这一问题,我们提出了一个基于国际海事组织(IMO)框架的船舶轨迹预测模型,并在现实航道交叉口观察到“意图报告-船舶机动-轨迹变化”的规则。我们的方法通过利用嵌入在船岸语音通信中的意图信息来实现早期意图识别。在确定的时空范围内,我们将通信数据与观察到的轨迹联系起来,以确定报告的意图。提取的意图标签与编码的历史轨迹特征相结合,并馈送到解码器中,动态约束预测方向。这种与报告意图的对齐在不影响准确性的情况下推进了预测时间表。吴淞口河口的实证验证表明,该模型在保持相同精度的前提下,预测时间比现有模型提前6.94 ~ 8.4 min。这项工作开创了将船岸语音通信集成到轨迹预测中的先河,突出了人工智能驱动的海上安全系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A ship trajectory prediction model integrating ship-shore speech communication for early prediction at waterway intersections
Early ship trajectory prediction improves traffic coordination but increases the risk of intent misjudgment at waterway intersections, leading to deviations between predicted and actual trajectories. To address this, we propose a ship trajectory prediction model grounded in the International Maritime Organization (IMO) framework and the rule of “intent report - ship maneuver - trajectory change” observed in real-world waterway intersections. Our method enables early intent recognition by leveraging intent information embedded in ship-shore speech communication. Within a defined spatiotemporal range, we associate communication data with observed trajectories to identify reported intentions. The extracted intent labels are integrated with encoded historical trajectory features and fed into a decoder, dynamically constraining predicted directions. This alignment with reported intent advances the prediction timeline without compromising accuracy. Empirical validation at the Wusongkou Estuary (Shanghai, China) demonstrates that our model advances the prediction timeline by 6.94–8.4 min compared to existing models, while maintaining similar accuracy. This work pioneers the integration of ship-shore speech communication into trajectory prediction, highlighting the potential of AI-driven maritime safety systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信