通过水蒸气介导的热分解从FeCO3中提取磁性大孔微球:纳米颗粒捕获和生物医学应用的意义

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Takahiro Kozawa*, , , Rito Fujiwara, , , Kayo Fukuyama, , , Kanako Yoshida, , , Soichiro Usuki, , , Masakazu Kawashita, , , Kota Hoshino, , , Satoshi Ota, , and , Hiroya Abe*, 
{"title":"通过水蒸气介导的热分解从FeCO3中提取磁性大孔微球:纳米颗粒捕获和生物医学应用的意义","authors":"Takahiro Kozawa*,&nbsp;, ,&nbsp;Rito Fujiwara,&nbsp;, ,&nbsp;Kayo Fukuyama,&nbsp;, ,&nbsp;Kanako Yoshida,&nbsp;, ,&nbsp;Soichiro Usuki,&nbsp;, ,&nbsp;Masakazu Kawashita,&nbsp;, ,&nbsp;Kota Hoshino,&nbsp;, ,&nbsp;Satoshi Ota,&nbsp;, and ,&nbsp;Hiroya Abe*,&nbsp;","doi":"10.1021/acsanm.5c02980","DOIUrl":null,"url":null,"abstract":"<p >The thermal decomposition of inorganic salts is a simple method to synthesize porous oxides. However, nanopore blocking during particle growth hinders the formation of macropores (&gt;50 nm). In this study, macroporous magnetite (Fe<sub>3</sub>O<sub>4</sub>) microspheres, composed of primary particles exceeding 500 nm in diameter, are synthesized via the thermal decomposition of FeCO<sub>3</sub> in the presence of water vapor. Under oxidizing (air) conditions, water vapor facilitates the formation of hematite (α-Fe<sub>2</sub>O<sub>3</sub>) with bicontinuous macroporosity. In a reducing atmosphere containing water vapor, FeCO<sub>3</sub> directly yields magnetite microspheres with open macropores (∼210 nm). Water vapor promotes nanoparticle bonding and growth at low temperatures, thereby facilitating spontaneous macropore formation. These structures allow efficient nanoparticle capture in solution and facile magnetic manipulation, as demonstrated by the successful capture of Au nanoparticles approximately 15 nm in size. Their excellent biocompatibility was confirmed through cytotoxicity assays. The developed macroporous magnetic architecture holds significant potential in biomedical applications, particularly for encapsulating and delivering tumor markers and antibody drugs─typically several tens of nanometers in size─for targeted therapeutic delivery.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 39","pages":"18781–18789"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Macroporous Microspheres from FeCO3 via Water Vapor-Mediated Thermal Decomposition: Implications for Nanoparticle Capture and Biomedical Applications\",\"authors\":\"Takahiro Kozawa*,&nbsp;, ,&nbsp;Rito Fujiwara,&nbsp;, ,&nbsp;Kayo Fukuyama,&nbsp;, ,&nbsp;Kanako Yoshida,&nbsp;, ,&nbsp;Soichiro Usuki,&nbsp;, ,&nbsp;Masakazu Kawashita,&nbsp;, ,&nbsp;Kota Hoshino,&nbsp;, ,&nbsp;Satoshi Ota,&nbsp;, and ,&nbsp;Hiroya Abe*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c02980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The thermal decomposition of inorganic salts is a simple method to synthesize porous oxides. However, nanopore blocking during particle growth hinders the formation of macropores (&gt;50 nm). In this study, macroporous magnetite (Fe<sub>3</sub>O<sub>4</sub>) microspheres, composed of primary particles exceeding 500 nm in diameter, are synthesized via the thermal decomposition of FeCO<sub>3</sub> in the presence of water vapor. Under oxidizing (air) conditions, water vapor facilitates the formation of hematite (α-Fe<sub>2</sub>O<sub>3</sub>) with bicontinuous macroporosity. In a reducing atmosphere containing water vapor, FeCO<sub>3</sub> directly yields magnetite microspheres with open macropores (∼210 nm). Water vapor promotes nanoparticle bonding and growth at low temperatures, thereby facilitating spontaneous macropore formation. These structures allow efficient nanoparticle capture in solution and facile magnetic manipulation, as demonstrated by the successful capture of Au nanoparticles approximately 15 nm in size. Their excellent biocompatibility was confirmed through cytotoxicity assays. The developed macroporous magnetic architecture holds significant potential in biomedical applications, particularly for encapsulating and delivering tumor markers and antibody drugs─typically several tens of nanometers in size─for targeted therapeutic delivery.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 39\",\"pages\":\"18781–18789\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02980\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02980","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无机盐热分解是合成多孔氧化物的一种简便方法。然而,在颗粒生长过程中,纳米孔阻塞阻碍了大孔(50 nm)的形成。本研究利用FeCO3在水蒸气存在下的热分解法制备了直径超过500 nm的大孔磁铁矿(Fe3O4)微球。在氧化(空气)条件下,水蒸气有利于形成具有双连续大孔隙的赤铁矿(α-Fe2O3)。在含有水蒸气的还原性大气中,FeCO3直接生成具有开放大孔(~ 210 nm)的磁铁矿微球。水蒸气在低温下促进纳米颗粒的结合和生长,从而促进自发大孔的形成。这些结构允许在溶液中有效捕获纳米颗粒和易于磁操作,正如成功捕获约15纳米尺寸的金纳米颗粒所证明的那样。细胞毒性实验证实了其良好的生物相容性。所开发的大孔磁性结构在生物医学应用中具有巨大的潜力,特别是在封装和递送肿瘤标志物和抗体药物(通常尺寸为几十纳米)以进行靶向治疗递送方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetic Macroporous Microspheres from FeCO3 via Water Vapor-Mediated Thermal Decomposition: Implications for Nanoparticle Capture and Biomedical Applications

Magnetic Macroporous Microspheres from FeCO3 via Water Vapor-Mediated Thermal Decomposition: Implications for Nanoparticle Capture and Biomedical Applications

The thermal decomposition of inorganic salts is a simple method to synthesize porous oxides. However, nanopore blocking during particle growth hinders the formation of macropores (>50 nm). In this study, macroporous magnetite (Fe3O4) microspheres, composed of primary particles exceeding 500 nm in diameter, are synthesized via the thermal decomposition of FeCO3 in the presence of water vapor. Under oxidizing (air) conditions, water vapor facilitates the formation of hematite (α-Fe2O3) with bicontinuous macroporosity. In a reducing atmosphere containing water vapor, FeCO3 directly yields magnetite microspheres with open macropores (∼210 nm). Water vapor promotes nanoparticle bonding and growth at low temperatures, thereby facilitating spontaneous macropore formation. These structures allow efficient nanoparticle capture in solution and facile magnetic manipulation, as demonstrated by the successful capture of Au nanoparticles approximately 15 nm in size. Their excellent biocompatibility was confirmed through cytotoxicity assays. The developed macroporous magnetic architecture holds significant potential in biomedical applications, particularly for encapsulating and delivering tumor markers and antibody drugs─typically several tens of nanometers in size─for targeted therapeutic delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信