纳米NiFe2O4 /还原氧化石墨烯纳米片复合材料对乙酰氨基酚的传感

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alba Arenas-Hernandez, , , Jose Luis Ortiz-Quiñonez, , and , Umapada Pal*, 
{"title":"纳米NiFe2O4 /还原氧化石墨烯纳米片复合材料对乙酰氨基酚的传感","authors":"Alba Arenas-Hernandez,&nbsp;, ,&nbsp;Jose Luis Ortiz-Quiñonez,&nbsp;, and ,&nbsp;Umapada Pal*,&nbsp;","doi":"10.1021/acsanm.5c02981","DOIUrl":null,"url":null,"abstract":"<p >Graphene oxide (GO), an oxygen-rich, chemically reactive carbon nanomaterial, offers a versatile platform for catalytic and sensing applications. In this work, we report a high-performance electrochemical sensor for acetaminophen detection based on nickel ferrite (NiFe<sub>2</sub>O<sub>4</sub>) nanoparticles anchored onto partially reduced graphene oxide (rGO). GO was synthesized via the Tour method and partially reduced with ethylene glycol during hydrothermal treatment. Two sensor configurations were fabricated: one with pristine NiFe<sub>2</sub>O<sub>4</sub> nanoparticles and the other with a NiFe<sub>2</sub>O<sub>4</sub>/rGO nanocomposite. Scanning electron microscopy revealed that GO facilitates the formation of smaller, uniformly dispersed NiFe<sub>2</sub>O<sub>4</sub> nanoparticles on its surface. The N<sub>2</sub> adsorption–desorption isotherm confirmed a mesoporous structure with narrow slit-like pores, enhancing the surface area. Electrochemical impedance spectroscopy and differential pulse voltammetry analyses revealed that the incorporation of rGO significantly reduces the charge-transfer resistance from 167.5 Ω for pristine NiFe<sub>2</sub>O<sub>4</sub> to 121.7 Ω in the composite and increases the density of the electroactive sites. The NiFe<sub>2</sub>O<sub>4</sub>/rGO sensor exhibited an exchange current density of 365.9 μA/cm<sup>2</sup>, a sensitivity of 673.25 μA/cm<sup>2</sup>·mM, and a detection limit of 0.14 μM, representing improvements of nearly 2 orders of magnitude over the pristine NiFe<sub>2</sub>O<sub>4</sub> sensor. These enhancements have been attributed to the synergistic combination of the high redox activity of NiFe<sub>2</sub>O<sub>4</sub>, the nanoscale particle size, and the superior conductivity of rGO at the electrode–electrolyte interface.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 39","pages":"18790–18805"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c02981","citationCount":"0","resultStr":"{\"title\":\"Acetaminophen Sensing Using NiFe2O4 Nanoparticle/Reduced Graphene Oxide Nanosheet Composites\",\"authors\":\"Alba Arenas-Hernandez,&nbsp;, ,&nbsp;Jose Luis Ortiz-Quiñonez,&nbsp;, and ,&nbsp;Umapada Pal*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c02981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Graphene oxide (GO), an oxygen-rich, chemically reactive carbon nanomaterial, offers a versatile platform for catalytic and sensing applications. In this work, we report a high-performance electrochemical sensor for acetaminophen detection based on nickel ferrite (NiFe<sub>2</sub>O<sub>4</sub>) nanoparticles anchored onto partially reduced graphene oxide (rGO). GO was synthesized via the Tour method and partially reduced with ethylene glycol during hydrothermal treatment. Two sensor configurations were fabricated: one with pristine NiFe<sub>2</sub>O<sub>4</sub> nanoparticles and the other with a NiFe<sub>2</sub>O<sub>4</sub>/rGO nanocomposite. Scanning electron microscopy revealed that GO facilitates the formation of smaller, uniformly dispersed NiFe<sub>2</sub>O<sub>4</sub> nanoparticles on its surface. The N<sub>2</sub> adsorption–desorption isotherm confirmed a mesoporous structure with narrow slit-like pores, enhancing the surface area. Electrochemical impedance spectroscopy and differential pulse voltammetry analyses revealed that the incorporation of rGO significantly reduces the charge-transfer resistance from 167.5 Ω for pristine NiFe<sub>2</sub>O<sub>4</sub> to 121.7 Ω in the composite and increases the density of the electroactive sites. The NiFe<sub>2</sub>O<sub>4</sub>/rGO sensor exhibited an exchange current density of 365.9 μA/cm<sup>2</sup>, a sensitivity of 673.25 μA/cm<sup>2</sup>·mM, and a detection limit of 0.14 μM, representing improvements of nearly 2 orders of magnitude over the pristine NiFe<sub>2</sub>O<sub>4</sub> sensor. These enhancements have been attributed to the synergistic combination of the high redox activity of NiFe<sub>2</sub>O<sub>4</sub>, the nanoscale particle size, and the superior conductivity of rGO at the electrode–electrolyte interface.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 39\",\"pages\":\"18790–18805\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c02981\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02981\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02981","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化石墨烯(GO)是一种富氧的化学活性碳纳米材料,为催化和传感应用提供了一个多功能平台。在这项工作中,我们报道了一种基于镍铁氧体(NiFe2O4)纳米颗粒锚定在部分还原氧化石墨烯(rGO)上的高性能对乙酰氨基酚检测电化学传感器。采用Tour法合成氧化石墨烯,经水热处理后用乙二醇进行部分还原。制备了两种传感器结构:一种是原始的NiFe2O4纳米粒子,另一种是NiFe2O4/氧化石墨烯纳米复合材料。扫描电镜显示,氧化石墨烯有助于在其表面形成更小、均匀分散的NiFe2O4纳米颗粒。N2吸附-脱附等温线证实其为介孔结构,具有窄的狭缝状孔隙,增大了比表面积。电化学阻抗谱和差分脉冲伏安分析表明,还原氧化石墨烯的加入显著降低了复合材料中NiFe2O4的电荷转移电阻,从原始的167.5 Ω降至121.7 Ω,并增加了电活性位点的密度。该传感器的交换电流密度为365.9 μA/cm2,灵敏度为673.25 μA/cm2·mM,检出限为0.14 μM,比原始NiFe2O4传感器提高了近2个数量级。这些增强是由于NiFe2O4的高氧化还原活性、纳米级粒度和氧化石墨烯在电极-电解质界面的优越导电性的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acetaminophen Sensing Using NiFe2O4 Nanoparticle/Reduced Graphene Oxide Nanosheet Composites

Graphene oxide (GO), an oxygen-rich, chemically reactive carbon nanomaterial, offers a versatile platform for catalytic and sensing applications. In this work, we report a high-performance electrochemical sensor for acetaminophen detection based on nickel ferrite (NiFe2O4) nanoparticles anchored onto partially reduced graphene oxide (rGO). GO was synthesized via the Tour method and partially reduced with ethylene glycol during hydrothermal treatment. Two sensor configurations were fabricated: one with pristine NiFe2O4 nanoparticles and the other with a NiFe2O4/rGO nanocomposite. Scanning electron microscopy revealed that GO facilitates the formation of smaller, uniformly dispersed NiFe2O4 nanoparticles on its surface. The N2 adsorption–desorption isotherm confirmed a mesoporous structure with narrow slit-like pores, enhancing the surface area. Electrochemical impedance spectroscopy and differential pulse voltammetry analyses revealed that the incorporation of rGO significantly reduces the charge-transfer resistance from 167.5 Ω for pristine NiFe2O4 to 121.7 Ω in the composite and increases the density of the electroactive sites. The NiFe2O4/rGO sensor exhibited an exchange current density of 365.9 μA/cm2, a sensitivity of 673.25 μA/cm2·mM, and a detection limit of 0.14 μM, representing improvements of nearly 2 orders of magnitude over the pristine NiFe2O4 sensor. These enhancements have been attributed to the synergistic combination of the high redox activity of NiFe2O4, the nanoscale particle size, and the superior conductivity of rGO at the electrode–electrolyte interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信