化学锚定晶格氧使层状钠阴极稳定

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zhiyu Song, Shivam Kansara, Shuoshuo Cheng, Miaorui Yang, Fan Li, Chenhao Qi, Shiyu Li, Jang-Yeon Hwang, Ying Bai
{"title":"化学锚定晶格氧使层状钠阴极稳定","authors":"Zhiyu Song, Shivam Kansara, Shuoshuo Cheng, Miaorui Yang, Fan Li, Chenhao Qi, Shiyu Li, Jang-Yeon Hwang, Ying Bai","doi":"10.1021/acsenergylett.5c02129","DOIUrl":null,"url":null,"abstract":"The long-term performance of P2-type layered transition metal oxides is often compromised by irreversible oxygen redox and lattice instability, resulting in rapid capacity degradation. This work proposes a dual-site La<sup>3+</sup> substitution strategy to stabilize the lattice oxygen and improve the electrochemical durability. The substitution of La<sup>3+</sup> into the transition metal layer forms strong La─O covalent interactions that anchor lattice oxygen while simultaneously lowering the O 2p orbital energy to suppress parasitic oxygen evolution. This electronic and structural modulation enables controlled anionic redox behavior and enhances phase reversibility under deep charge. <i>In situ</i> XRD reveals a minimal volume change (0.9%) during cycling, indicative of an apparent structural resilience. The optimized 0.02La-doped cathode exhibits stable full-cell performance when paired with commercial hard carbon, achieving 80.2% capacity retention over 600 cycles at 5C. These findings demonstrate a viable path toward stable sodium-ion cathodes via rare-earth-assisted lattice oxygen regulation.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"53 1","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically Anchored Lattice Oxygen Enables Stability in Layered Sodium Cathodes\",\"authors\":\"Zhiyu Song, Shivam Kansara, Shuoshuo Cheng, Miaorui Yang, Fan Li, Chenhao Qi, Shiyu Li, Jang-Yeon Hwang, Ying Bai\",\"doi\":\"10.1021/acsenergylett.5c02129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The long-term performance of P2-type layered transition metal oxides is often compromised by irreversible oxygen redox and lattice instability, resulting in rapid capacity degradation. This work proposes a dual-site La<sup>3+</sup> substitution strategy to stabilize the lattice oxygen and improve the electrochemical durability. The substitution of La<sup>3+</sup> into the transition metal layer forms strong La─O covalent interactions that anchor lattice oxygen while simultaneously lowering the O 2p orbital energy to suppress parasitic oxygen evolution. This electronic and structural modulation enables controlled anionic redox behavior and enhances phase reversibility under deep charge. <i>In situ</i> XRD reveals a minimal volume change (0.9%) during cycling, indicative of an apparent structural resilience. The optimized 0.02La-doped cathode exhibits stable full-cell performance when paired with commercial hard carbon, achieving 80.2% capacity retention over 600 cycles at 5C. These findings demonstrate a viable path toward stable sodium-ion cathodes via rare-earth-assisted lattice oxygen regulation.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.5c02129\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c02129","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

p2型层状过渡金属氧化物的长期性能经常受到不可逆氧氧化还原和晶格不稳定性的影响,导致容量快速退化。本工作提出了一种双位置La3+取代策略来稳定晶格氧并提高电化学耐久性。La3+在过渡金属层中的取代形成了强的La─O共价相互作用,锚定了晶格氧,同时降低了o2p轨道能量,抑制了寄生氧的演化。这种电子和结构调制可以控制阴离子氧化还原行为,并增强深电荷下的相可逆性。原位XRD显示,在循环过程中,体积变化最小(0.9%),表明具有明显的结构弹性。当与商用硬碳配对时,优化后的0.02 la掺杂阴极具有稳定的全电池性能,在5C下600次循环中保持80.2%的容量。这些发现证明了通过稀土辅助的晶格氧调控制备稳定钠离子阴极的可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chemically Anchored Lattice Oxygen Enables Stability in Layered Sodium Cathodes

Chemically Anchored Lattice Oxygen Enables Stability in Layered Sodium Cathodes
The long-term performance of P2-type layered transition metal oxides is often compromised by irreversible oxygen redox and lattice instability, resulting in rapid capacity degradation. This work proposes a dual-site La3+ substitution strategy to stabilize the lattice oxygen and improve the electrochemical durability. The substitution of La3+ into the transition metal layer forms strong La─O covalent interactions that anchor lattice oxygen while simultaneously lowering the O 2p orbital energy to suppress parasitic oxygen evolution. This electronic and structural modulation enables controlled anionic redox behavior and enhances phase reversibility under deep charge. In situ XRD reveals a minimal volume change (0.9%) during cycling, indicative of an apparent structural resilience. The optimized 0.02La-doped cathode exhibits stable full-cell performance when paired with commercial hard carbon, achieving 80.2% capacity retention over 600 cycles at 5C. These findings demonstrate a viable path toward stable sodium-ion cathodes via rare-earth-assisted lattice oxygen regulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信