控制SiC外延石墨烯局部电子特性的亚表面界面结构(0001)。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Umamahesh Thupakula,Shen Chen,Yong Han,Michael C Tringides,Marek Kolmer
{"title":"控制SiC外延石墨烯局部电子特性的亚表面界面结构(0001)。","authors":"Umamahesh Thupakula,Shen Chen,Yong Han,Michael C Tringides,Marek Kolmer","doi":"10.1021/acs.jpclett.5c02179","DOIUrl":null,"url":null,"abstract":"Recently realized high-mobility semiconducting epitaxial graphene on silicon carbide (SiC) [Zhao, J. Nature 2024, 625 (7993), 60-65, 10.1038/s41586-023-06811-0] provided an important step toward integration of the graphene-based system into active components in postsilicon micro- and nanoelectronics. However, the exact atomic-scale structure and complex bonding configurations of the first epitaxial graphene carbon layer (Cbuffer) remain an open problem. Our recent report [Kolmer, M. Communications Physics 2024, 7 (1), 16, 10.1038/s42005-023-01515-3] has shed new light on understanding this interface, where the external transverse electric field-dependent dynamic switching behavior of the Cbuffer-SiC bonds was observed. Here, using scanning tunneling microscopy and spectroscopy (STM and STS), we present direct evidence of silicon (Si) vacancies at the interface and provide their distribution at the topmost reconstructed SiC(0001) layer. Bias voltage and epitaxial graphene thickness-dependent characterization of the collective Cbuffer-SiC interface showed that \"Si\" vacancy sites beneath Cbuffer are stable under STM electric fields. Moreover, the vacancies introduce localized electronic states below the Fermi level, thereby enhancing the charge-transfer phenomenon across the interface.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"50 1","pages":"10487-10498"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subsurface Interface Structure Controlling Local Electronic Properties of Epitaxial Graphene on SiC(0001).\",\"authors\":\"Umamahesh Thupakula,Shen Chen,Yong Han,Michael C Tringides,Marek Kolmer\",\"doi\":\"10.1021/acs.jpclett.5c02179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently realized high-mobility semiconducting epitaxial graphene on silicon carbide (SiC) [Zhao, J. Nature 2024, 625 (7993), 60-65, 10.1038/s41586-023-06811-0] provided an important step toward integration of the graphene-based system into active components in postsilicon micro- and nanoelectronics. However, the exact atomic-scale structure and complex bonding configurations of the first epitaxial graphene carbon layer (Cbuffer) remain an open problem. Our recent report [Kolmer, M. Communications Physics 2024, 7 (1), 16, 10.1038/s42005-023-01515-3] has shed new light on understanding this interface, where the external transverse electric field-dependent dynamic switching behavior of the Cbuffer-SiC bonds was observed. Here, using scanning tunneling microscopy and spectroscopy (STM and STS), we present direct evidence of silicon (Si) vacancies at the interface and provide their distribution at the topmost reconstructed SiC(0001) layer. Bias voltage and epitaxial graphene thickness-dependent characterization of the collective Cbuffer-SiC interface showed that \\\"Si\\\" vacancy sites beneath Cbuffer are stable under STM electric fields. Moreover, the vacancies introduce localized electronic states below the Fermi level, thereby enhancing the charge-transfer phenomenon across the interface.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"50 1\",\"pages\":\"10487-10498\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c02179\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c02179","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近在碳化硅(SiC)上实现的高迁移率半导体外延石墨烯[赵,J. Nature, 2024, 625 (7993), 60-65, 10.1038/s41586-023-06811-0]为将石墨烯系统集成到后硅微纳米电子学的有源元件中提供了重要的一步。然而,第一外延石墨烯碳层(Cbuffer)的精确原子尺度结构和复杂的键合构型仍然是一个悬而未决的问题。我们最近的报告[Kolmer, M. Communications Physics, 2024, 7 (1), 16, 10.1038/s42005-023-01515-3]为理解这个界面提供了新的思路,其中观察到缓冲- sic键的外部横向电场依赖的动态开关行为。在这里,我们使用扫描隧道显微镜和光谱(STM和STS),提供了界面上硅(Si)空位的直接证据,并提供了它们在最顶层重建的SiC(0001)层中的分布。基于偏置电压和外延石墨烯厚度的Cbuffer- sic界面表征表明,在STM电场下,Cbuffer下的“Si”空位是稳定的。此外,空位引入了费米能级以下的局域电子态,从而增强了界面上的电荷转移现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subsurface Interface Structure Controlling Local Electronic Properties of Epitaxial Graphene on SiC(0001).
Recently realized high-mobility semiconducting epitaxial graphene on silicon carbide (SiC) [Zhao, J. Nature 2024, 625 (7993), 60-65, 10.1038/s41586-023-06811-0] provided an important step toward integration of the graphene-based system into active components in postsilicon micro- and nanoelectronics. However, the exact atomic-scale structure and complex bonding configurations of the first epitaxial graphene carbon layer (Cbuffer) remain an open problem. Our recent report [Kolmer, M. Communications Physics 2024, 7 (1), 16, 10.1038/s42005-023-01515-3] has shed new light on understanding this interface, where the external transverse electric field-dependent dynamic switching behavior of the Cbuffer-SiC bonds was observed. Here, using scanning tunneling microscopy and spectroscopy (STM and STS), we present direct evidence of silicon (Si) vacancies at the interface and provide their distribution at the topmost reconstructed SiC(0001) layer. Bias voltage and epitaxial graphene thickness-dependent characterization of the collective Cbuffer-SiC interface showed that "Si" vacancy sites beneath Cbuffer are stable under STM electric fields. Moreover, the vacancies introduce localized electronic states below the Fermi level, thereby enhancing the charge-transfer phenomenon across the interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信