利用增强的原子结构表征解决化学基序相似性,以准确预测金属界面上的描述符。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Cheng Cai,Tao Wang
{"title":"利用增强的原子结构表征解决化学基序相似性,以准确预测金属界面上的描述符。","authors":"Cheng Cai,Tao Wang","doi":"10.1038/s41467-025-63860-x","DOIUrl":null,"url":null,"abstract":"Accurately predicting catalytic descriptors with machine learning (ML) methods is significant to achieving accelerated catalyst design, where a unique representation of the atomic structure of each system is the key to developing a universal, efficient, and accurate ML model that is capable of tackling diverse degrees of complexity in heterogeneous catalysis scenarios. Herein, we integrate equivariant message-passing-enhanced atomic structure representation to resolve chemical-motif similarity in highly complex catalytic systems. Our developed equivariant graph neural network (equivGNN) model achieves mean absolute errors <0.09 eV for different descriptors at metallic interfaces, including complex adsorbates with more diverse adsorption motifs on ordered catalyst surfaces, adsorption motifs on highly disordered surfaces of high-entropy alloys, and the complex structures of supported nanoparticles. The prediction accuracy and easy implementation attained by our model across various systems demonstrate its robustness and potentially broad applicability, laying a reasonable basis for achieving accelerated catalyst design.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"124 1","pages":"8761"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolving chemical-motif similarity with enhanced atomic structure representations for accurately predicting descriptors at metallic interfaces.\",\"authors\":\"Cheng Cai,Tao Wang\",\"doi\":\"10.1038/s41467-025-63860-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately predicting catalytic descriptors with machine learning (ML) methods is significant to achieving accelerated catalyst design, where a unique representation of the atomic structure of each system is the key to developing a universal, efficient, and accurate ML model that is capable of tackling diverse degrees of complexity in heterogeneous catalysis scenarios. Herein, we integrate equivariant message-passing-enhanced atomic structure representation to resolve chemical-motif similarity in highly complex catalytic systems. Our developed equivariant graph neural network (equivGNN) model achieves mean absolute errors <0.09 eV for different descriptors at metallic interfaces, including complex adsorbates with more diverse adsorption motifs on ordered catalyst surfaces, adsorption motifs on highly disordered surfaces of high-entropy alloys, and the complex structures of supported nanoparticles. The prediction accuracy and easy implementation attained by our model across various systems demonstrate its robustness and potentially broad applicability, laying a reasonable basis for achieving accelerated catalyst design.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"124 1\",\"pages\":\"8761\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63860-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63860-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用机器学习(ML)方法准确预测催化描述符对于实现加速催化剂设计具有重要意义,其中每个系统的原子结构的独特表示是开发通用,高效和准确的ML模型的关键,该模型能够处理多相催化场景中不同程度的复杂性。在此,我们整合了等变信息传递增强的原子结构表示来解决高度复杂催化系统中的化学基序相似性。我们开发的等变图神经网络(equivariant graph neural network, equivGNN)模型对不同金属界面描述符的平均绝对误差<0.09 eV,包括有序催化剂表面上具有多种吸附基序的复杂吸附,高熵合金高度无序表面上的吸附基序,以及负载纳米颗粒的复杂结构。该模型在不同系统中的预测精度和易于实现,证明了其鲁棒性和潜在的广泛适用性,为实现加速催化剂设计奠定了合理的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolving chemical-motif similarity with enhanced atomic structure representations for accurately predicting descriptors at metallic interfaces.
Accurately predicting catalytic descriptors with machine learning (ML) methods is significant to achieving accelerated catalyst design, where a unique representation of the atomic structure of each system is the key to developing a universal, efficient, and accurate ML model that is capable of tackling diverse degrees of complexity in heterogeneous catalysis scenarios. Herein, we integrate equivariant message-passing-enhanced atomic structure representation to resolve chemical-motif similarity in highly complex catalytic systems. Our developed equivariant graph neural network (equivGNN) model achieves mean absolute errors <0.09 eV for different descriptors at metallic interfaces, including complex adsorbates with more diverse adsorption motifs on ordered catalyst surfaces, adsorption motifs on highly disordered surfaces of high-entropy alloys, and the complex structures of supported nanoparticles. The prediction accuracy and easy implementation attained by our model across various systems demonstrate its robustness and potentially broad applicability, laying a reasonable basis for achieving accelerated catalyst design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信