Rajamanikandan Ramar, Sasikumar Kandasamy, Heongkyu Ju
{"title":"用于纳米酶的新兴二维mxene共轭纳米结构:生物化学传感技术的当前进展和未来前沿","authors":"Rajamanikandan Ramar, Sasikumar Kandasamy, Heongkyu Ju","doi":"10.1039/d5en00710k","DOIUrl":null,"url":null,"abstract":"Nanozymes, nanostructured materials with exceptional catalytic performance, are recognized for their unique benefits over natural enzymes, including notably low fabrication costs and high chemical stability. Emerging as a captivating frontier in nanozyme research, MXene-based composite material nanozymes (MXzymes) have sparked intense research interests owing to their unique compositions and structural features, which can be engineered to unlock their enzyme-mimicking catalytic prowess. This approach opens groundbreaking opportunities for detecting biologically significant, food-related, and environmentally crucial analytes. This review highlights the innovative fabrication methods of MXzymes, focusing on their diverse nanozyme activity types reported thus far, including peroxidase-like and oxidase-like functionalities, while unveiling the underlying catalytic mechanisms in detail. In addition, recent pioneering breakthroughs in MXzymes are comprehensively reviewed, including catalytic signal amplification by MXzymes, which can function as cutting-edge sensing platforms as evidenced by colorimetric, smartphone-based, chemiluminescent, electrochemical, and surface-enhanced Raman scattering-based analyses. Finally, the promising potential applications of MXzymes and fundamental challenges associated with their scalability, stability, and biocompatibility for MXzymes-based chemical/biomedical sensors are addressed.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"99 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging 2D MXene-conjugated nanoarchitectures for nanozymes: Current advances and future frontiers in biochemical sensing technologies\",\"authors\":\"Rajamanikandan Ramar, Sasikumar Kandasamy, Heongkyu Ju\",\"doi\":\"10.1039/d5en00710k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanozymes, nanostructured materials with exceptional catalytic performance, are recognized for their unique benefits over natural enzymes, including notably low fabrication costs and high chemical stability. Emerging as a captivating frontier in nanozyme research, MXene-based composite material nanozymes (MXzymes) have sparked intense research interests owing to their unique compositions and structural features, which can be engineered to unlock their enzyme-mimicking catalytic prowess. This approach opens groundbreaking opportunities for detecting biologically significant, food-related, and environmentally crucial analytes. This review highlights the innovative fabrication methods of MXzymes, focusing on their diverse nanozyme activity types reported thus far, including peroxidase-like and oxidase-like functionalities, while unveiling the underlying catalytic mechanisms in detail. In addition, recent pioneering breakthroughs in MXzymes are comprehensively reviewed, including catalytic signal amplification by MXzymes, which can function as cutting-edge sensing platforms as evidenced by colorimetric, smartphone-based, chemiluminescent, electrochemical, and surface-enhanced Raman scattering-based analyses. Finally, the promising potential applications of MXzymes and fundamental challenges associated with their scalability, stability, and biocompatibility for MXzymes-based chemical/biomedical sensors are addressed.\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d5en00710k\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d5en00710k","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Emerging 2D MXene-conjugated nanoarchitectures for nanozymes: Current advances and future frontiers in biochemical sensing technologies
Nanozymes, nanostructured materials with exceptional catalytic performance, are recognized for their unique benefits over natural enzymes, including notably low fabrication costs and high chemical stability. Emerging as a captivating frontier in nanozyme research, MXene-based composite material nanozymes (MXzymes) have sparked intense research interests owing to their unique compositions and structural features, which can be engineered to unlock their enzyme-mimicking catalytic prowess. This approach opens groundbreaking opportunities for detecting biologically significant, food-related, and environmentally crucial analytes. This review highlights the innovative fabrication methods of MXzymes, focusing on their diverse nanozyme activity types reported thus far, including peroxidase-like and oxidase-like functionalities, while unveiling the underlying catalytic mechanisms in detail. In addition, recent pioneering breakthroughs in MXzymes are comprehensively reviewed, including catalytic signal amplification by MXzymes, which can function as cutting-edge sensing platforms as evidenced by colorimetric, smartphone-based, chemiluminescent, electrochemical, and surface-enhanced Raman scattering-based analyses. Finally, the promising potential applications of MXzymes and fundamental challenges associated with their scalability, stability, and biocompatibility for MXzymes-based chemical/biomedical sensors are addressed.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis