基于深度学习的氯碱XCl (X = Li, Na, or K)相变行为预测策略

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Heqing Tian,Tianyu Liu,Xianyou Lan
{"title":"基于深度学习的氯碱XCl (X = Li, Na, or K)相变行为预测策略","authors":"Heqing Tian,Tianyu Liu,Xianyou Lan","doi":"10.1021/acs.langmuir.5c03547","DOIUrl":null,"url":null,"abstract":"In this study, we systematically investigated the phase transition characteristics of alkali metal chloride salts through a deep potential molecular dynamics (DPMD) strategy. The melting points are determined using the superheating-supercooling hysteresis method, while the phase transition behavior is comprehensively analyzed through the radial distribution function (RDF), mean-square displacement (MSD), self-diffusion coefficient (D), coordination number (CN), and molecular dynamics trajectory. The simulation captures the abrupt changes in the local environment of anions and cations during the melting of a molten salt. Molten salts do not complete phase transitions near the actual melting point. Instead, they undergo long-range ordered and long-range disordered transitions near the superheating and supercooling temperature, respectively. MSD, D, and CN analysis quantitatively demonstrate the hysteresis phenomenon during thermal cycling, accompanied by the recombination of ion coordination structures during the phase transition. This work reveals the solid-liquid phase transformation of molten salt and establishes a reliable computational framework for the high-precision prediction of thermal properties.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"114 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-Learning-Driven Prediction Strategy for the Phase Transition Behavior of Alkali Chloride XCl (X = Li, Na, or K).\",\"authors\":\"Heqing Tian,Tianyu Liu,Xianyou Lan\",\"doi\":\"10.1021/acs.langmuir.5c03547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we systematically investigated the phase transition characteristics of alkali metal chloride salts through a deep potential molecular dynamics (DPMD) strategy. The melting points are determined using the superheating-supercooling hysteresis method, while the phase transition behavior is comprehensively analyzed through the radial distribution function (RDF), mean-square displacement (MSD), self-diffusion coefficient (D), coordination number (CN), and molecular dynamics trajectory. The simulation captures the abrupt changes in the local environment of anions and cations during the melting of a molten salt. Molten salts do not complete phase transitions near the actual melting point. Instead, they undergo long-range ordered and long-range disordered transitions near the superheating and supercooling temperature, respectively. MSD, D, and CN analysis quantitatively demonstrate the hysteresis phenomenon during thermal cycling, accompanied by the recombination of ion coordination structures during the phase transition. This work reveals the solid-liquid phase transformation of molten salt and establishes a reliable computational framework for the high-precision prediction of thermal properties.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.5c03547\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c03547","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们通过深势分子动力学(deep potential molecular dynamics, DPMD)策略系统地研究了碱金属氯盐的相变特性。采用过热-过冷滞后法确定熔点,并通过径向分布函数(RDF)、均方位移(MSD)、自扩散系数(D)、配位数(CN)和分子动力学轨迹对相变行为进行综合分析。模拟捕获了熔盐融化过程中阴离子和阳离子局部环境的突变。熔盐在实际熔点附近不完成相变。相反,它们分别在过热温度和过冷温度附近经历远距离有序转变和远距离无序转变。MSD、D和CN分析定量地证明了热循环过程中的滞后现象,相变过程中伴随着离子配位结构的重组。本工作揭示了熔盐的固液相转变,为高精度预测熔盐热物性建立了可靠的计算框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-Learning-Driven Prediction Strategy for the Phase Transition Behavior of Alkali Chloride XCl (X = Li, Na, or K).
In this study, we systematically investigated the phase transition characteristics of alkali metal chloride salts through a deep potential molecular dynamics (DPMD) strategy. The melting points are determined using the superheating-supercooling hysteresis method, while the phase transition behavior is comprehensively analyzed through the radial distribution function (RDF), mean-square displacement (MSD), self-diffusion coefficient (D), coordination number (CN), and molecular dynamics trajectory. The simulation captures the abrupt changes in the local environment of anions and cations during the melting of a molten salt. Molten salts do not complete phase transitions near the actual melting point. Instead, they undergo long-range ordered and long-range disordered transitions near the superheating and supercooling temperature, respectively. MSD, D, and CN analysis quantitatively demonstrate the hysteresis phenomenon during thermal cycling, accompanied by the recombination of ion coordination structures during the phase transition. This work reveals the solid-liquid phase transformation of molten salt and establishes a reliable computational framework for the high-precision prediction of thermal properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信