基于孤立框架中聚阴离子旋转动力学的锂超导体设计。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-01 DOI:10.1021/acsnano.5c12598
Yu Yang, , , Kui Chen, , and , Hong Zhu*, 
{"title":"基于孤立框架中聚阴离子旋转动力学的锂超导体设计。","authors":"Yu Yang,&nbsp;, ,&nbsp;Kui Chen,&nbsp;, and ,&nbsp;Hong Zhu*,&nbsp;","doi":"10.1021/acsnano.5c12598","DOIUrl":null,"url":null,"abstract":"<p >Current strategies to enhance lithium-ion conductivity in solid electrolytes primarily emphasize static structural factors, whereas fundamental principles for designing lithium superionic conductors via dynamic mechanisms remain largely unexplored. Here, we propose a design principle that leverages polyanion rotational dynamics in isolated frameworks to enhance lithium-ion conductivity, where the rotational dynamics can be modulated by structural descriptors such as lithium number density and polyanion moment of inertia. By combining high-throughput computations with <i>ab initio</i> molecular dynamics simulations, we identify two candidate lithium superionic conductors exhibiting polyanion rotation, Li<sub>2</sub>VF<sub>6</sub> and LiVF<sub>6</sub>, with theoretical room-temperature ionic conductivities of 64.59 and 13.66 mS/cm, respectively. The rotational motion of polyanion couples with lithium-ion translational motion in both vibrational and spatiotemporal properties, thereby dynamically modulating the energy landscape and facilitating lithium-ion migration. These findings provide valuable insights into leveraging polyanion rotational dynamics to rationally design lithium superionic conductors for all-solid-state batteries.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 40","pages":"35833–35841"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Lithium Superionic Conductors via Polyanion Rotational Dynamics in Isolated Framework\",\"authors\":\"Yu Yang,&nbsp;, ,&nbsp;Kui Chen,&nbsp;, and ,&nbsp;Hong Zhu*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c12598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Current strategies to enhance lithium-ion conductivity in solid electrolytes primarily emphasize static structural factors, whereas fundamental principles for designing lithium superionic conductors via dynamic mechanisms remain largely unexplored. Here, we propose a design principle that leverages polyanion rotational dynamics in isolated frameworks to enhance lithium-ion conductivity, where the rotational dynamics can be modulated by structural descriptors such as lithium number density and polyanion moment of inertia. By combining high-throughput computations with <i>ab initio</i> molecular dynamics simulations, we identify two candidate lithium superionic conductors exhibiting polyanion rotation, Li<sub>2</sub>VF<sub>6</sub> and LiVF<sub>6</sub>, with theoretical room-temperature ionic conductivities of 64.59 and 13.66 mS/cm, respectively. The rotational motion of polyanion couples with lithium-ion translational motion in both vibrational and spatiotemporal properties, thereby dynamically modulating the energy landscape and facilitating lithium-ion migration. These findings provide valuable insights into leveraging polyanion rotational dynamics to rationally design lithium superionic conductors for all-solid-state batteries.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 40\",\"pages\":\"35833–35841\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c12598\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c12598","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前提高固体电解质中锂离子电导率的策略主要强调静态结构因素,而通过动态机制设计锂超离子导体的基本原理仍未得到充分探索。在这里,我们提出了一种设计原则,利用孤立框架中的聚阴离子旋转动力学来增强锂离子的电导率,其中旋转动力学可以通过结构描述符(如锂数密度和聚阴离子惯性矩)来调节。通过高通量计算和从头算分子动力学模拟相结合,我们确定了两种具有多阴离子旋转的锂超离子导体Li2VF6和LiVF6,它们的理论室温离子电导率分别为64.59和13.66 mS/cm。聚阴离子的旋转运动与锂离子的平移运动同时具有振动和时空性质,从而动态调节能量格局,促进锂离子迁移。这些发现为利用聚阴离子旋转动力学来合理设计全固态电池的锂超离子导体提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing Lithium Superionic Conductors via Polyanion Rotational Dynamics in Isolated Framework

Designing Lithium Superionic Conductors via Polyanion Rotational Dynamics in Isolated Framework

Current strategies to enhance lithium-ion conductivity in solid electrolytes primarily emphasize static structural factors, whereas fundamental principles for designing lithium superionic conductors via dynamic mechanisms remain largely unexplored. Here, we propose a design principle that leverages polyanion rotational dynamics in isolated frameworks to enhance lithium-ion conductivity, where the rotational dynamics can be modulated by structural descriptors such as lithium number density and polyanion moment of inertia. By combining high-throughput computations with ab initio molecular dynamics simulations, we identify two candidate lithium superionic conductors exhibiting polyanion rotation, Li2VF6 and LiVF6, with theoretical room-temperature ionic conductivities of 64.59 and 13.66 mS/cm, respectively. The rotational motion of polyanion couples with lithium-ion translational motion in both vibrational and spatiotemporal properties, thereby dynamically modulating the energy landscape and facilitating lithium-ion migration. These findings provide valuable insights into leveraging polyanion rotational dynamics to rationally design lithium superionic conductors for all-solid-state batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信