镍钨硫电催化剂对光电阴极稳定性和电化学性能的影响

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zhengwu Liu, Hongwei Liu, Xiaoliang Ren, Pusen Lu, Jianjun Ye, Kang Wang, Feng Jiang
{"title":"镍钨硫电催化剂对光电阴极稳定性和电化学性能的影响","authors":"Zhengwu Liu, Hongwei Liu, Xiaoliang Ren, Pusen Lu, Jianjun Ye, Kang Wang, Feng Jiang","doi":"10.1039/d5ta06369h","DOIUrl":null,"url":null,"abstract":"Silicon-based photocathodes are attractive for photoelectrochemical (PEC) water splitting, yet their deployment is constrained by reliance on precious metal catalysts like platinum (Pt). Here, we introduce a cost-efficient, tungsten-doped nickel sulfide (NiWS) catalyst, photoelectrodeposited onto a TiO 2 -passivated silicon substrate. X-ray photoelectron spectroscopy reveals that W incorporation tailors the local electronic environment of Ni and S, facilitating charge redistribution and accelerating interfacial charge transfer kinetics. The engineered NiWS/TiO 2 /Si photocathode delivers a high photocurrent density of -30.8 mA cm -2 at 0 V RHE , with an onset potential of 0.58 V RHE , an applied bias photon-to-current efficiency (ABPE) of 4.47%, and a Faradaic efficiency of ~90% for hydrogen evolution in neutral phosphate buffer (pH 6.5). It also demonstrates exceptional durability, retaining stable operation over 1014 hours under continuous illumination. When integrated with a silicon photovoltaic cell in a tandem architecture, the system enables unbiased solar-driven water splitting, delivering a solar-to-hydrogen (STH) efficiency of 4.01% and sustaining performance for 115 hours under AM 1.5G conditions. This work positions NiWS as a scalable, earth-abundant alternative to noble metals for long-term PEC hydrogen production.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"6 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Ni-W-S electrocatalysts on the stability and electrochemical properties of photocathode\",\"authors\":\"Zhengwu Liu, Hongwei Liu, Xiaoliang Ren, Pusen Lu, Jianjun Ye, Kang Wang, Feng Jiang\",\"doi\":\"10.1039/d5ta06369h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon-based photocathodes are attractive for photoelectrochemical (PEC) water splitting, yet their deployment is constrained by reliance on precious metal catalysts like platinum (Pt). Here, we introduce a cost-efficient, tungsten-doped nickel sulfide (NiWS) catalyst, photoelectrodeposited onto a TiO 2 -passivated silicon substrate. X-ray photoelectron spectroscopy reveals that W incorporation tailors the local electronic environment of Ni and S, facilitating charge redistribution and accelerating interfacial charge transfer kinetics. The engineered NiWS/TiO 2 /Si photocathode delivers a high photocurrent density of -30.8 mA cm -2 at 0 V RHE , with an onset potential of 0.58 V RHE , an applied bias photon-to-current efficiency (ABPE) of 4.47%, and a Faradaic efficiency of ~90% for hydrogen evolution in neutral phosphate buffer (pH 6.5). It also demonstrates exceptional durability, retaining stable operation over 1014 hours under continuous illumination. When integrated with a silicon photovoltaic cell in a tandem architecture, the system enables unbiased solar-driven water splitting, delivering a solar-to-hydrogen (STH) efficiency of 4.01% and sustaining performance for 115 hours under AM 1.5G conditions. This work positions NiWS as a scalable, earth-abundant alternative to noble metals for long-term PEC hydrogen production.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ta06369h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta06369h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硅基光电阴极对光电化学(PEC)水分解很有吸引力,但它们的应用受到依赖铂(Pt)等贵金属催化剂的限制。在这里,我们介绍了一种具有成本效益的,掺杂钨的硫化镍(NiWS)催化剂,光电沉积在二氧化钛钝化的硅衬底上。x射线光电子能谱分析表明,W的加入调整了Ni和S的局部电子环境,促进了电荷的重新分配,加速了界面电荷转移动力学。设计的NiWS/ tio2 /Si光电阴极在0 V RHE下具有-30.8 mA cm -2的高光电流密度,起始电位为0.58 V RHE,应用偏压光子电流效率(ABPE)为4.47%,在中性磷酸盐缓冲液(pH 6.5)中析氢的法拉第效率为~90%。它还表现出卓越的耐用性,在连续照明下保持1014小时以上的稳定运行。当与硅光伏电池集成在串联结构中时,该系统可以实现无偏太阳能驱动的水分解,提供4.01%的太阳能制氢效率,并在AM 1.5G条件下保持115小时的性能。这项工作将NiWS定位为一种可扩展的、地球丰富的贵金属替代品,用于长期的PEC制氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Ni-W-S electrocatalysts on the stability and electrochemical properties of photocathode
Silicon-based photocathodes are attractive for photoelectrochemical (PEC) water splitting, yet their deployment is constrained by reliance on precious metal catalysts like platinum (Pt). Here, we introduce a cost-efficient, tungsten-doped nickel sulfide (NiWS) catalyst, photoelectrodeposited onto a TiO 2 -passivated silicon substrate. X-ray photoelectron spectroscopy reveals that W incorporation tailors the local electronic environment of Ni and S, facilitating charge redistribution and accelerating interfacial charge transfer kinetics. The engineered NiWS/TiO 2 /Si photocathode delivers a high photocurrent density of -30.8 mA cm -2 at 0 V RHE , with an onset potential of 0.58 V RHE , an applied bias photon-to-current efficiency (ABPE) of 4.47%, and a Faradaic efficiency of ~90% for hydrogen evolution in neutral phosphate buffer (pH 6.5). It also demonstrates exceptional durability, retaining stable operation over 1014 hours under continuous illumination. When integrated with a silicon photovoltaic cell in a tandem architecture, the system enables unbiased solar-driven water splitting, delivering a solar-to-hydrogen (STH) efficiency of 4.01% and sustaining performance for 115 hours under AM 1.5G conditions. This work positions NiWS as a scalable, earth-abundant alternative to noble metals for long-term PEC hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信