利用废弃风力涡轮机叶片复合材料作为水泥熟料和玻璃纤维生产原料,量化全球变暖和人类健康-呼吸影响的生命周期评估。

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Caroline V Cameron,Sabrina Spatari,Jason B Baxter,Megan A Creighton
{"title":"利用废弃风力涡轮机叶片复合材料作为水泥熟料和玻璃纤维生产原料,量化全球变暖和人类健康-呼吸影响的生命周期评估。","authors":"Caroline V Cameron,Sabrina Spatari,Jason B Baxter,Megan A Creighton","doi":"10.1021/acs.est.5c07978","DOIUrl":null,"url":null,"abstract":"The wind energy sector is a growing contributor to global electricity generation. The increasing deployment of wind turbines also creates significant waste when turbine materials reach their end-of-life. Glass fiber reinforced polymer composites, which comprise the majority of a wind turbine blade's mass, are difficult to separate into their component parts for recycling. This study employs a cradle-to-gate life cycle assessment to evaluate the environmental impacts of utilizing waste wind turbine blade material in cement clinker and fiberglass production. We find that incorporating waste blades as 15% of the feedstock in a cement clinker production plant reduces global warming and human health-respiratory impacts by 9 and 34%, respectively, compared to using virgin materials only. For a fiberglass plant, this substitution increases global warming impacts by 11% but decreases respiratory health impacts by 3%. Each kilogram of secondary product diverts approximately 0.25-0.32 kg of WTB waste from landfills. The projected rate of blade decommissioning of ∼800,000 tonnes per year would replace less than 1% of the overall virgin material demand for the cement clinker industry and up to 8% for the fiberglass industry, indicating plenty of capacity for these industries to accommodate this waste blade material in their feedstocks.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"101 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life Cycle Assessment to Quantify Global Warming and Human Health-Respiratory Impacts of Using Composites from Waste Wind Turbine Blades as Feedstock for Cement Clinker and Fiberglass Production.\",\"authors\":\"Caroline V Cameron,Sabrina Spatari,Jason B Baxter,Megan A Creighton\",\"doi\":\"10.1021/acs.est.5c07978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wind energy sector is a growing contributor to global electricity generation. The increasing deployment of wind turbines also creates significant waste when turbine materials reach their end-of-life. Glass fiber reinforced polymer composites, which comprise the majority of a wind turbine blade's mass, are difficult to separate into their component parts for recycling. This study employs a cradle-to-gate life cycle assessment to evaluate the environmental impacts of utilizing waste wind turbine blade material in cement clinker and fiberglass production. We find that incorporating waste blades as 15% of the feedstock in a cement clinker production plant reduces global warming and human health-respiratory impacts by 9 and 34%, respectively, compared to using virgin materials only. For a fiberglass plant, this substitution increases global warming impacts by 11% but decreases respiratory health impacts by 3%. Each kilogram of secondary product diverts approximately 0.25-0.32 kg of WTB waste from landfills. The projected rate of blade decommissioning of ∼800,000 tonnes per year would replace less than 1% of the overall virgin material demand for the cement clinker industry and up to 8% for the fiberglass industry, indicating plenty of capacity for these industries to accommodate this waste blade material in their feedstocks.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.5c07978\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c07978","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

风能部门对全球发电的贡献越来越大。风力涡轮机的日益普及也会在涡轮机材料达到使用寿命时产生巨大的浪费。玻璃纤维增强聚合物复合材料,构成了风力涡轮机叶片的大部分质量,很难分离成它们的组成部分进行回收。本研究采用从摇篮到闸门的生命周期评估,来评估在水泥熟料和玻璃纤维生产中利用废弃风力涡轮机叶片材料对环境的影响。我们发现,与仅使用原始材料相比,将废叶片作为水泥熟料生产厂15%的原料,可分别减少全球变暖和人类健康-呼吸系统影响的9%和34%。对于玻璃纤维工厂来说,这种替代使全球变暖影响增加11%,但使呼吸健康影响减少3%。每公斤二次产品可以从垃圾填埋场转移约0.25-0.32公斤的垃圾。预计每年80万吨的叶片退役率将取代水泥熟料行业不到1%的总原始材料需求,而玻璃纤维行业则高达8%,这表明这些行业有足够的能力在其原料中容纳这些废叶片材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life Cycle Assessment to Quantify Global Warming and Human Health-Respiratory Impacts of Using Composites from Waste Wind Turbine Blades as Feedstock for Cement Clinker and Fiberglass Production.
The wind energy sector is a growing contributor to global electricity generation. The increasing deployment of wind turbines also creates significant waste when turbine materials reach their end-of-life. Glass fiber reinforced polymer composites, which comprise the majority of a wind turbine blade's mass, are difficult to separate into their component parts for recycling. This study employs a cradle-to-gate life cycle assessment to evaluate the environmental impacts of utilizing waste wind turbine blade material in cement clinker and fiberglass production. We find that incorporating waste blades as 15% of the feedstock in a cement clinker production plant reduces global warming and human health-respiratory impacts by 9 and 34%, respectively, compared to using virgin materials only. For a fiberglass plant, this substitution increases global warming impacts by 11% but decreases respiratory health impacts by 3%. Each kilogram of secondary product diverts approximately 0.25-0.32 kg of WTB waste from landfills. The projected rate of blade decommissioning of ∼800,000 tonnes per year would replace less than 1% of the overall virgin material demand for the cement clinker industry and up to 8% for the fiberglass industry, indicating plenty of capacity for these industries to accommodate this waste blade material in their feedstocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信