SARS-CoV-2校对酶介导的瑞德西韦耐药性的分子基础

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yang Yang, Yu Li, Scott T. Becker, Ayesha Khan, Gloria Luo, Bin Liu, Chang Liu
{"title":"SARS-CoV-2校对酶介导的瑞德西韦耐药性的分子基础","authors":"Yang Yang, Yu Li, Scott T. Becker, Ayesha Khan, Gloria Luo, Bin Liu, Chang Liu","doi":"10.1073/pnas.2519755122","DOIUrl":null,"url":null,"abstract":"SARS-CoV-2’s remarkable resistance to nucleotide analog antivirals such as remdesivir, which thwarts RNA synthesis by inhibiting viral polymerase (RdRp), challenges available therapies. We reveal that remdesivir incorporation destabilizes RdRp–RNA complex while enhancing RNA binding to the proofreading exoribonuclease (ExoN), facilitating remdesivir excision. Conserved ExoN determinants for remdesivir recognition and excision underpin ExoN-mediated resistance across all coronaviruses. These findings inform the design of next-generation antivirals and combination therapies capable of overcoming ExoN-mediated resistance.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"96 2 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular basis of SARS-CoV-2 proofreading enzyme–mediated resistance to remdesivir\",\"authors\":\"Yang Yang, Yu Li, Scott T. Becker, Ayesha Khan, Gloria Luo, Bin Liu, Chang Liu\",\"doi\":\"10.1073/pnas.2519755122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SARS-CoV-2’s remarkable resistance to nucleotide analog antivirals such as remdesivir, which thwarts RNA synthesis by inhibiting viral polymerase (RdRp), challenges available therapies. We reveal that remdesivir incorporation destabilizes RdRp–RNA complex while enhancing RNA binding to the proofreading exoribonuclease (ExoN), facilitating remdesivir excision. Conserved ExoN determinants for remdesivir recognition and excision underpin ExoN-mediated resistance across all coronaviruses. These findings inform the design of next-generation antivirals and combination therapies capable of overcoming ExoN-mediated resistance.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"96 2 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2519755122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2519755122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

SARS-CoV-2对核苷酸类似抗病毒药物(如通过抑制病毒聚合酶(RdRp)阻碍RNA合成的remdesivir)具有显著的耐药性,这对现有的治疗方法构成了挑战。我们发现,瑞德西韦掺入破坏了RdRp-RNA复合物的稳定性,同时增强了RNA与校对外核糖核酸酶(ExoN)的结合,促进了瑞德西韦的切除。瑞德西韦识别和切除的保守外显子决定因素是所有冠状病毒外显子介导耐药性的基础。这些发现为设计能够克服外显子介导的耐药的下一代抗病毒药物和联合疗法提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular basis of SARS-CoV-2 proofreading enzyme–mediated resistance to remdesivir
SARS-CoV-2’s remarkable resistance to nucleotide analog antivirals such as remdesivir, which thwarts RNA synthesis by inhibiting viral polymerase (RdRp), challenges available therapies. We reveal that remdesivir incorporation destabilizes RdRp–RNA complex while enhancing RNA binding to the proofreading exoribonuclease (ExoN), facilitating remdesivir excision. Conserved ExoN determinants for remdesivir recognition and excision underpin ExoN-mediated resistance across all coronaviruses. These findings inform the design of next-generation antivirals and combination therapies capable of overcoming ExoN-mediated resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信